
Jeepney Documentation
Release 0.8.0

Thomas Kluyver

Dec 19, 2022

Contents

1 Connecting to DBus and sending messages 3
1.1 Connections and Routers . 4
1.2 Message generators and proxies . 5
1.3 Sending & receiving file descriptors . 6

2 Making and parsing messages 7
2.1 Making messages . 7

3 Generating D-Bus wrappers 9

4 API reference 11
4.1 Core API . 11
4.2 Common messages . 15
4.3 Authentication . 16
4.4 File descriptor support . 18
4.5 Blocking I/O . 19
4.6 Blocking I/O with threads . 20
4.7 Trio integration . 22
4.8 Asyncio integration . 24
4.9 I/O Exceptions . 25

5 Design & Limitations 27
5.1 Non-goals . 27
5.2 Alternatives . 28

6 What is D-Bus? 29
6.1 Methods & signals . 30
6.2 Names . 30
6.3 Message buses . 30
6.4 Special features . 31

7 Release notes 33
7.1 0.8 . 33
7.2 0.7.1 . 33
7.3 0.7 . 33
7.4 0.6 . 34
7.5 0.5 . 34

i

7.6 0.4.3 . 34
7.7 0.4.2 . 34
7.8 0.4.1 . 35
7.9 0.4 . 35

8 Indices and tables 37

Python Module Index 39

Index 41

ii

Jeepney Documentation, Release 0.8.0

Jeepney is a pure Python interface to D-Bus, a protocol for interprocess communication on desktop Linux (mostly).
See What is D-Bus? for more background on what it can do.

The core of Jeepney is I/O free, and the jeepney.io package contains bindings for different event loops to handle
I/O. Jeepney tries to be non-magical, so you may have to write a bit more code than with other interfaces such as
dbus-python or pydbus.

Jeepney doesn’t rely on libdbus or other compiled libraries, so it’s easy to install with Python tools like pip:

pip install jeepney

For most use cases, the D-Bus daemon needs to be running on your computer; this is a standard part of most modern
Linux desktops.

Contents:

Contents 1

https://sans-io.readthedocs.io/
https://pypi.python.org/pypi/dbus-python
https://github.com/LEW21/pydbus

Jeepney Documentation, Release 0.8.0

2 Contents

CHAPTER 1

Connecting to DBus and sending messages

Jeepney can be used with several different frameworks:

• Blocking I/O

• Multi-threading with the threading module

• Trio

• asyncio

For each of these, there is a module in jeepney.io providing the integration layer.

Here’s an example of sending a desktop notification, using blocking I/O:

from jeepney import DBusAddress, new_method_call
from jeepney.io.blocking import open_dbus_connection

notifications = DBusAddress('/org/freedesktop/Notifications',
bus_name='org.freedesktop.Notifications',
interface='org.freedesktop.Notifications')

connection = open_dbus_connection(bus='SESSION')

Construct a new D-Bus message. new_method_call takes the address, the
method name, the signature string, and a tuple of arguments.
msg = new_method_call(notifications, 'Notify', 'susssasa{sv}i',

('jeepney_test', # App name
0, # Not replacing any previous notification
'', # Icon
'Hello, world!', # Summary
'This is an example notification from Jeepney',
[], {}, # Actions, hints
-1, # expire_timeout (-1 = default)

))

Send the message and wait for the reply

(continues on next page)

3

https://docs.python.org/3/library/threading.html
https://trio.readthedocs.io/en/stable/
https://docs.python.org/3/library/asyncio.html

Jeepney Documentation, Release 0.8.0

(continued from previous page)

reply = connection.send_and_get_reply(msg)
print('Notification ID:', reply.body[0])

connection.close()

And here is the same thing using asyncio:

"""Send a desktop notification

See also aio_notify.py, which does the same with the higher-level Proxy API.
"""
import asyncio

from jeepney import DBusAddress, new_method_call
from jeepney.io.asyncio import open_dbus_router

notifications = DBusAddress('/org/freedesktop/Notifications',
bus_name='org.freedesktop.Notifications',
interface='org.freedesktop.Notifications')

async def send_notification():
msg = new_method_call(notifications, 'Notify', 'susssasa{sv}i',

('jeepney_test', # App name
0, # Not replacing any previous notification
'', # Icon
'Hello, world!', # Summary
'This is an example notification from Jeepney',
[], {}, # Actions, hints
-1, # expire_timeout (-1 = default)

))
Send the message and await the reply
async with open_dbus_router() as router:

reply = await router.send_and_get_reply(msg)
print('Notification ID:', reply.body[0])

loop = asyncio.get_event_loop()
loop.run_until_complete(send_notification())

See the examples folder in Jeepney’s source repository for more examples.

1.1 Connections and Routers

Each integration (except blocking I/O) can create connections and routers.

Routers are useful for calling methods in other processes. Routers let you send a request and wait for a reply, using
a proxy or with router.send_and_get_reply(). You can also filter incoming messages into queues, e.g. to
wait for a specific signal. But if messages arrive faster than they are processed, these queues fill up, and messages may
be dropped.

Connections are simpler: they let you send and receive messages, but conn.receive() will give you the next
message read, whatever that is. You’d use this to write a server which responds to incoming messages. A connection
will never discard an incoming message.

Note: For blocking, single-threaded I/O, the connection doubles as a router. Incoming messages while you’re waiting
for a reply will be filtered, and you can also filter the next message by calling conn.recv_messages().

4 Chapter 1. Connecting to DBus and sending messages

https://gitlab.com/takluyver/jeepney/-/tree/master/examples

Jeepney Documentation, Release 0.8.0

Routers for the other integrations receive messages in a background task.

1.2 Message generators and proxies

If you’re calling a number of different methods, you can make a message generator class containing their definitions.
Jeepney includes a tool to generate these classes automatically—see Generating D-Bus wrappers.

Message generators define how to construct messages. Proxies are wrappers around message generators which send a
message and get the reply back.

Let’s rewrite the example above to use a message generator and a proxy:

"""Send a desktop notification

See also aio_notify_noproxy.py, which does the same with lower-level APIs
"""
import asyncio

from jeepney import MessageGenerator, new_method_call
from jeepney.io.asyncio import open_dbus_router, Proxy

---- Message generator, created by jeepney.bindgen ----
class Notifications(MessageGenerator):

interface = 'org.freedesktop.Notifications'

def __init__(self, object_path='/org/freedesktop/Notifications',
bus_name='org.freedesktop.Notifications'):

super().__init__(object_path=object_path, bus_name=bus_name)

def Notify(self, arg_0, arg_1, arg_2, arg_3, arg_4, arg_5, arg_6, arg_7):
return new_method_call(self, 'Notify', 'susssasa{sv}i',

(arg_0, arg_1, arg_2, arg_3, arg_4, arg_5, arg_6, arg_
→˓7))

def CloseNotification(self, arg_0):
return new_method_call(self, 'CloseNotification', 'u',

(arg_0,))

def GetCapabilities(self):
return new_method_call(self, 'GetCapabilities')

def GetServerInformation(self):
return new_method_call(self, 'GetServerInformation')

---- End auto generated code ----

async def send_notification():
async with open_dbus_router() as router:

proxy = Proxy(Notifications(), router)

resp = await proxy.Notify('jeepney_test', # App name
0, # Not replacing any previous notification
'', # Icon
'Hello, world!', # Summary
'This is an example notification from Jeepney',

(continues on next page)

1.2. Message generators and proxies 5

Jeepney Documentation, Release 0.8.0

(continued from previous page)

[], {}, # Actions, hints
-1, # expire_timeout (-1 = default)

)
print('Notification ID:', resp[0])

if __name__ == '__main__':
asyncio.run(send_notification())

This is more code for the simple use case here, but in a larger application collecting the message definitions together
like this could make it clearer.

1.3 Sending & receiving file descriptors

New in version 0.7.

D-Bus allows sending file descriptors - references to open files, sockets, etc. To use this, use the blocking, multi-
threading or Trio integration and enable it (enable_fds=True) when connecting to D-Bus. If you enable FD
support but the message bus can’t or won’t support it, FDNegotiationError will be raised.

To send a file descriptor, pass any object with a .fileno() method, such as an open file or socket, or a suitable
integer. The file descriptor must not be closed before the message is sent.

A received file descriptor will be returned as a FileDescriptor object to help avoid leaking FDs. This can easily
be converted to a file object (to_file()), a socket (to_socket()) or a plain integer (to_raw_fd()).

Send a file descriptor for a temp file (normally not visible in any folder)
with TemporaryFile() as tf:

msg = new_method_call(server, 'write_data', 'h', (tf,))
await router.send_and_get_reply(msg)

Receive a file descriptor, use it as a writable file
msg = await conn.receive()
fd, = msg.body
with fd.to_file('w') as f:

f.write(f'Timestamp: {datetime.now()}')

The snippets above are based on the Trio integration. See the examples directory in the Jeepney repository for com-
plete, working examples.

6 Chapter 1. Connecting to DBus and sending messages

https://gitlab.com/takluyver/jeepney/-/tree/master/examples

CHAPTER 2

Making and parsing messages

The core of Jeepney is code to build, serialise and deserialise D-Bus messages.

2.1 Making messages

D-Bus has four message types. Three, method call, method return and error, are used in a request-reply pattern. The
fourth, signal, is a broadcast message with no reply.

• Method call messages are most conveniently made with a message generator class, which can be autogenerated.
One layer down from this is new_method_call(), which takes a DBusAddress object.

• Method return and error messages are made with new_method_return() and new_error(), passing the
method call message which they are replying to.

• signal messages are made with new_signal(), which takes a DBusAddress representing the sender.

All of these return a Message object. Message.serialise() converts it to bytes, but none of these core methods
ever send a message. See the integration layer for that.

2.1.1 Signatures

D-Bus is strongly typed, and every message has a signature describing the body data. These are strings using characters
such as i for a signed 32-bit integer. See the DBus specification for the full list.

Jeepney does not try to guess or discover the signature when you build a message: your code must explicitly specify a
signature for every message. However, Jeepney can help you write this code: see Generating D-Bus wrappers.

D-Bus types are converted to and from native Python objects as follows:

• All the D-Bus integer types are represented as Python int, including BYTE when it’s not in an array.

• BOOLEAN is bool.

• DOUBLE is float.

• STRING, OBJECT_PATH and SIGNATURE are all str.

7

https://dbus.freedesktop.org/doc/dbus-specification.html#type-system
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

Jeepney Documentation, Release 0.8.0

• ARRAY is list, except that an array of BYTE is a bytes object, and an array of DICT_ENTRY is a dict.

• STRUCT is tuple.

• VARIANT is a 2-tuple (signature, data). E.g. to put a string into a variant field, you would pass the data
("s", "my string").

• UNIX_FD are converted from objects with a .fileno() method or plain integers, and converted to
FileDescriptor objects. See Sending & receiving file descriptors for more details.

8 Chapter 2. Making and parsing messages

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

CHAPTER 3

Generating D-Bus wrappers

D-Bus includes a mechanism to introspect remote objects and discover the methods they define. Jeepney can use this
to generate classes defining the messages to send. Use it like this:

python3 -m jeepney.bindgen --name org.freedesktop.Notifications \
--path /org/freedesktop/Notifications

This command will produce the class in the example under Message generators and proxies.

You specify name—which D-Bus service you’re talking to—and path—an object in that service. Jeepney will generate
a wrapper for each interface that object has, except for some standard ones like the introspection interface itself.

You are welcome to edit the generated code, e.g. to add docstrings or give parameters meaningful names. Names like
arg_1 are created when introspection doesn’t provide a name.

9

Jeepney Documentation, Release 0.8.0

10 Chapter 3. Generating D-Bus wrappers

CHAPTER 4

API reference

4.1 Core API

4.1.1 Message constructors

jeepney.new_method_call(remote_obj, method, signature=None, body=())
Construct a new method call message

This is a relatively low-level method. In many cases, this will be called from a MessageGenerator subclass
which provides a more convenient API.

Parameters

• remote_obj (DBusAddress) – The object to call a method on

• method (str) – The name of the method to call

• signature (str) – The DBus signature of the body data

• body (tuple) – Body data (i.e. method parameters)

jeepney.new_method_return(parent_msg, signature=None, body=())
Construct a new response message

Parameters

• parent_msg (Message) – The method call this is a reply to

• signature (str) – The DBus signature of the body data

• body (tuple) – Body data

jeepney.new_error(parent_msg, error_name, signature=None, body=())
Construct a new error response message

Parameters

• parent_msg (Message) – The method call this is a reply to

11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Jeepney Documentation, Release 0.8.0

• error_name (str) – The name of the error

• signature (str) – The DBus signature of the body data

• body (tuple) – Body data

jeepney.new_signal(emitter, signal, signature=None, body=())
Construct a new signal message

Parameters

• emitter (DBusAddress) – The object sending the signal

• signal (str) – The name of the signal

• signature (str) – The DBus signature of the body data

• body (tuple) – Body data

class jeepney.DBusAddress(object_path, bus_name=None, interface=None)
This identifies the object and interface a message is for.

e.g. messages to display desktop notifications would have this address:

DBusAddress('/org/freedesktop/Notifications',
bus_name='org.freedesktop.Notifications',
interface='org.freedesktop.Notifications')

class jeepney.MessageGenerator(object_path, bus_name)
Subclass this to define the methods available on a DBus interface.

jeepney.bindgen can automatically create subclasses using introspection.

See also:

Generating D-Bus wrappers

4.1.2 Parsing

class jeepney.Parser
Parse DBus messages from a stream of incoming data.

add_data(data: bytes, fds=())
Provide newly received data to the parser

get_next_message()→ Optional[jeepney.low_level.Message]
Parse one message, if there is enough data.

Returns None if it doesn’t have a complete message.

4.1.3 Message objects

class jeepney.Message(header, body)
Object representing a DBus message.

It’s not normally necessary to construct this directly: use higher level functions and methods instead.

header
A Header object

12 Chapter 4. API reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple

Jeepney Documentation, Release 0.8.0

body
A tuple of the data in this message. The number and types of the elements depend on the message’s
signature:

D-Bus type D-Bus code Python type
BYTE y int
BOOLEAN b bool
INT16 n int
UINT16 q int
INT32 i int
UINT32 u int
INT64 x int
UINT64 t int
DOUBLE d float
STRING s str
OBJECT_PATH o str
SIGNATURE g str
ARRAY a list
STRUCT () tuple
VARIANT v 2-tuple (signature, value)
DICT_ENTRY {} dict (for array of dict entries)
UNIX_FD h See Sending & receiving file descriptors

serialise(serial=None, fds=None)→ bytes
Convert this message to bytes.

Specifying serial overrides the msg.header.serial field, so a connection can use its own serial num-
ber without modifying the message.

If file-descriptor support is in use, fds should be a array.array object with type 'i'. Any file descrip-
tors in the message will be added to the array. If the message contains FDs, it can’t be serialised without
this array.

class jeepney.Header(endianness, message_type, flags, protocol_version, body_length, serial, fields)

endianness
Endianness object, affecting message serialisation.

message_type
MessageType object.

flags
MessageFlag object.

protocol_version
Currently always 1.

body_length
The length of the raw message body in bytes.

serial
Sender’s serial number for this message. This is not necessarily set for outgoing messages - see Message.
serialise().

fields
Mapping of HeaderFields values to the relevant Python objects.

4.1. Core API 13

https://docs.python.org/3/library/array.html#array.array

Jeepney Documentation, Release 0.8.0

4.1.4 Exceptions

exception jeepney.SizeLimitError
Raised when trying to (de-)serialise data exceeding D-Bus’ size limit.

This is currently only implemented for arrays, where the maximum size is 64 MiB.

exception jeepney.DBusErrorResponse(msg)
Raised by proxy method calls when the reply is an error message

name
The error name from the remote end.

body
Any data fields contained in the error message.

4.1.5 Enums & Flags

class jeepney.Endianness

little = 1

big = 2

class jeepney.HeaderFields

path = 1

interface = 2

member = 3

error_name = 4

reply_serial = 5

destination = 6

sender = 7

signature = 8

unix_fds = 9

class jeepney.MessageFlag

no_reply_expected = 1
On a method call message, indicates that a reply should not be sent.

no_auto_start = 2
D-Bus includes a mechanism to start a service on demand to handle messages. If this flag is set, it will
avoid that, only handling the message if the target is already running.

allow_interactive_authorization = 4
Signals that the recipient may prompt the user for elevated privileges to handle the request. The D-Bus
specification has more details.

class jeepney.MessageType

method_call = 1

14 Chapter 4. API reference

Jeepney Documentation, Release 0.8.0

method_return = 2

error = 3

signal = 4

4.1.6 Matching messages

class jeepney.MatchRule(*, type=None, sender=None, interface=None, member=None, path=None,
path_namespace=None, destination=None, eavesdrop=False)

Construct a match rule to subscribe to DBus messages.

e.g.:

mr = MatchRule(
interface='org.freedesktop.DBus',
member='NameOwnerChanged',
type='signal'

)
msg = message_bus.AddMatch(mr)
Send this message to subscribe to the signal

MatchRule objects are used both for filtering messages internally, and for setting up subscriptions in the message
bus.

add_arg_condition(argno: int, value: str, kind=’string’)
Add a condition for a particular argument

argno: int, 0-63 kind: ‘string’, ‘path’, ‘namespace’

matches(msg: jeepney.low_level.Message)→ bool
Returns True if msg matches this rule

serialise()→ str
Convert to a string to use in an AddMatch call to the message bus

4.2 Common messages

These classes are message generators. Wrap them in a Proxy class to actually send the messages as well.

class jeepney.Properties(obj: Union[jeepney.wrappers.DBusAddress, jeep-
ney.wrappers.MessageGenerator])

Build messages for accessing object properties

If a D-Bus object has multiple interfaces, each interface has its own set of properties.

This uses the standard DBus interface org.freedesktop.DBus.Properties

get(name)
Get the value of the property name

get_all()
Get all property values for this interface

set(name, signature, value)
Set the property name to value (with appropriate signature)

class jeepney.Introspectable(object_path, bus_name)

4.2. Common messages 15

Jeepney Documentation, Release 0.8.0

Introspect()
Request D-Bus introspection XML for a remote object

class jeepney.DBus(object_path=’/org/freedesktop/DBus’, bus_name=’org.freedesktop.DBus’)
Messages to talk to the message bus

There is a ready-made instance of this at jeepney.message_bus.

AddMatch(rule)
rule can be a str or a MatchRule instance

GetAdtAuditSessionData(name)

GetConnectionCredentials(name)

GetConnectionSELinuxSecurityContext(name)

GetConnectionUnixProcessID(name)

GetConnectionUnixUser(name)

GetId()

GetNameOwner(name)

Hello()

ListActivatableNames()

ListNames()

ListQueuedOwners(name)

NameHasOwner(name)

ReleaseName(name)

ReloadConfig()

RemoveMatch(rule)

RequestName(name, flags=0)

StartServiceByName(name)

UpdateActivationEnvironment(env)

interface = 'org.freedesktop.DBus'

class jeepney.Monitoring(object_path=’/org/freedesktop/DBus’, bus_name=’org.freedesktop.DBus’)

BecomeMonitor(rules)
Convert this connection to a monitor connection (advanced)

4.3 Authentication

Note: If you use any of Jeepney’s I/O integrations, authentication is built in. You only need these functions if you’re
working outside that.

If you are setting up a socket for D-Bus, you will need to do SASL authentication before starting to send and receive
D-Bus messages. This text based protocol is completely different to D-Bus itself.

16 Chapter 4. API reference

https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer

Jeepney Documentation, Release 0.8.0

Only a small fraction of SASL is implemented here, primarily what Jeepney’s integration layer uses. If you’re doing
something different, you may need to implement other messages yourself.

jeepney.auth.make_auth_external()→ bytes
Prepare an AUTH command line with the current effective user ID.

This is the preferred authentication method for typical D-Bus connections over a Unix domain socket.

jeepney.auth.make_auth_anonymous()→ bytes
Format an AUTH command line for the ANONYMOUS mechanism

Jeepney’s higher-level wrappers don’t currently use this mechanism, but third-party code may choose to.

See <https://tools.ietf.org/html/rfc4505> for details.

jeepney.auth.BEGIN
Send this just before switching to the D-Bus protocol.

class jeepney.auth.Authenticator(enable_fds=False)
Process data for the SASL authentication conversation

If enable_fds is True, this includes negotiating support for passing file descriptors.

Changed in version 0.7: This class was renamed from SASLParser and substantially changed.

authenticated
Initially False, changes to True when authentication has succeeded.

error
None, or the raw bytes of an error message if authentication failed.

data_to_send()→ Optional[bytes]
Get a line of data to send to the server

The data returned should be sent before waiting to receive data. Returns empty bytes if waiting for more
data from the server, and None if authentication is finished (success or error).

Iterating over the Authenticator object will also yield these lines; feed() should be called with received
data inside the loop.

feed(data: bytes)
Process received data

Raises AuthenticationError if the incoming data is not as expected for successful authentication. The
connection should then be abandoned.

exception jeepney.auth.AuthenticationError(data, msg=’Authentication failed’)
Raised when DBus authentication fails

exception jeepney.auth.FDNegotiationError(data)
Raised when file descriptor support is requested but not available

4.3.1 Typical flow

1. Send the data from Authenticator.data_to_send() (or for req_data in authenticator).

2. Receive data from the server, pass to Authenticator.feed().

3. Repeat 1 & 2 until Authenticator.authenticated is True, or the for loop exits.

4. Send BEGIN .

5. Start sending & receiving D-Bus messages.

4.3. Authentication 17

https://tools.ietf.org/html/rfc4505

Jeepney Documentation, Release 0.8.0

4.4 File descriptor support

class jeepney.FileDescriptor(fd)
A file descriptor received in a D-Bus message

This wrapper helps ensure that the file descriptor is closed exactly once. If you don’t explicitly convert or close
the FileDescriptor object, it will close its file descriptor when it goes out of scope, and emit a ResourceWarning.

to_file(mode, buffering=-1, encoding=None, errors=None, newline=None)
Convert to a Python file object:

with fd.to_file('w') as f:
f.write('xyz')

The arguments are the same as for the builtin open() function.

The FileDescriptor can’t be used after calling this. Closing the file object will also close the file
descriptor.

Note: If the descriptor does not refer to a regular file, or it doesn’t have the right access mode, you may
get strange behaviour or errors while using it.

You can use os.stat() and the stat module to check the type of object the descriptor refers to, and
fcntl.fcntl() to check the access mode, e.g.:

stat.S_ISREG(os.stat(fd.fileno()).st_mode) # Regular file?

status_flags = fcntl.fcntl(fd, fcntl.F_GETFL)
(status_flags & os.O_ACCMODE) == os.O_RDONLY # Read-only?

to_socket()
Convert to a socket object

This returns a standard library socket.socket() object:

with fd.to_socket() as sock:
b = sock.sendall(b'xyz')

The wrapper object can’t be used after calling this. Closing the socket object will also close the file
descriptor.

to_raw_fd()
Convert to the low-level integer file descriptor:

raw_fd = fd.to_raw_fd()
os.write(raw_fd, b'xyz')
os.close(raw_fd)

The FileDescriptor can’t be used after calling this. The caller is responsible for closing the file
descriptor.

fileno()
Get the integer file descriptor

This does not change the state of the FileDescriptor object, unlike the to_* methods.

18 Chapter 4. API reference

https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/os.html#os.stat
https://docs.python.org/3/library/stat.html#module-stat
https://docs.python.org/3/library/fcntl.html#fcntl.fcntl

Jeepney Documentation, Release 0.8.0

close()
Close the file descriptor

This can safely be called multiple times, but will raise RuntimeError if called after converting it with one
of the to_* methods.

This object can also be used in a with block, to close it on leaving the block.

exception jeepney.NoFDError
Raised by FileDescriptor methods if it was already closed/converted

4.5 Blocking I/O

This is a good option for simple scripts, where you don’t need to do anything else while waiting for a D-Bus reply. If
you will use D-Bus for multiple threads, or you want a nicer way to wait for signals, see Blocking I/O with threads.

jeepney.io.blocking.open_dbus_connection(bus=’SESSION’, enable_fds=False,
auth_timeout=1.0) → jeep-
ney.io.blocking.DBusConnection

Connect to a D-Bus message bus

Pass enable_fds=True to allow sending & receiving file descriptors. An error will be raised if the bus does
not allow this. For simplicity, it’s advisable to leave this disabled unless you need it.

D-Bus has an authentication step before sending or receiving messages. This takes < 1 ms in normal operation,
but there is a timeout so that client code won’t get stuck if the server doesn’t reply. auth_timeout configures this
timeout in seconds.

class jeepney.io.blocking.DBusConnection(sock: socket.socket, enable_fds=False)

send(message: jeepney.low_level.Message, serial=None)
Serialise and send a Message object

receive(*, timeout=None)→ jeepney.low_level.Message
Return the next available message from the connection

If the data is ready, this will return immediately, even if timeout<=0. Otherwise, it will wait for up to
timeout seconds, or indefinitely if timeout is None. If no message comes in time, it raises TimeoutError.

send_and_get_reply(message, *, timeout=None, unwrap=None)
Send a message, wait for the reply and return it

Filters are applied to other messages received before the reply - see add_filter().

recv_messages(*, timeout=None)
Receive one message and apply filters

See filter(). Returns nothing.

filter(rule, *, queue: Optional[collections.deque] = None, bufsize=1)
Create a filter for incoming messages

Usage:

with conn.filter(rule) as matches:
matches is a deque containing matched messages
matching_msg = conn.recv_until_filtered(matches)

Parameters

4.5. Blocking I/O 19

Jeepney Documentation, Release 0.8.0

• rule (jeepney.MatchRule) – Catch messages matching this rule

• queue (collections.deque) – Matched messages will be added to this

• bufsize (int) – If no deque is passed in, create one with this size

recv_until_filtered(queue, *, timeout=None)→ jeepney.low_level.Message
Process incoming messages until one is filtered into queue

Pops the message from queue and returns it, or raises TimeoutError if the optional timeout expires. Without
a timeout, this is equivalent to:

while len(queue) == 0:
conn.recv_messages()

return queue.popleft()

In the other I/O modules, there is no need for this, because messages are placed in queues by a separate
task.

Parameters

• queue (collections.deque) – A deque connected by filter()

• timeout (float) – Maximum time to wait in seconds

close()
Close the connection

Using with open_dbus_connection() will also close the connection on exiting the block.

class jeepney.io.blocking.Proxy(msggen, connection, *, timeout=None)
A blocking proxy for calling D-Bus methods

You can call methods on the proxy object, such as bus_proxy.Hello() to make a method call over D-Bus
and wait for a reply. It will either return a tuple of returned data, or raise DBusErrorResponse. The methods
available are defined by the message generator you wrap.

You can set a time limit on a call by passing _timeout= in the method call, or set a default when creating
the proxy. The _timeout argument is not passed to the message generator. All timeouts are in seconds, and
TimeoutErrror is raised if it expires before a reply arrives.

Parameters

• msggen – A message generator object

• connection (DBusConnection) – Connection to send and receive messages

• timeout (float) – Default seconds to wait for a reply, or None for no limit

See also:

Message generators and proxies

4.6 Blocking I/O with threads

This allows using a D-Bus connection from multiple threads. The router also launches a separate thread to receive
incoming messages. See Connections and Routers for more about the two interfaces.

jeepney.io.threading.open_dbus_router(bus=’SESSION’, enable_fds=False)
Open a D-Bus ‘router’ to send and receive messages.

Use as a context manager:

20 Chapter 4. API reference

https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Jeepney Documentation, Release 0.8.0

with open_dbus_router() as router:
...

On leaving the with block, the connection will be closed.

Parameters

• bus (str) – ‘SESSION’ or ‘SYSTEM’ or a supported address.

• enable_fds (bool) – Whether to enable passing file descriptors.

Returns DBusRouter

class jeepney.io.threading.DBusRouter(conn: jeepney.io.threading.DBusConnection)
A client D-Bus connection which can wait for replies.

This runs a separate receiver thread and dispatches received messages.

It’s possible to wrap a DBusConnection in a router temporarily. Using the connection directly while it is
wrapped is not supported, but you can use it again after the router is closed.

send(message, *, serial=None)
Serialise and send a Message object

send_and_get_reply(msg: jeepney.low_level.Message, *, timeout=None) → jeep-
ney.low_level.Message

Send a method call message, wait for and return a reply

filter(rule, *, queue: Optional[queue.Queue] = None, bufsize=1)
Create a filter for incoming messages

Usage:

with router.filter(rule) as queue:
matching_msg = queue.get()

Parameters

• rule (jeepney.MatchRule) – Catch messages matching this rule

• queue (queue.Queue) – Matched messages will be added to this

• bufsize (int) – If no queue is passed in, create one with this size

close()
Close this router

This does not close the underlying connection.

Leaving the with block will also close the router.

class jeepney.io.threading.Proxy(msggen, router, *, timeout=None)
A blocking proxy for calling D-Bus methods via a DBusRouter.

You can call methods on the proxy object, such as bus_proxy.Hello() to make a method call over D-Bus
and wait for a reply. It will either return a tuple of returned data, or raise DBusErrorResponse. The methods
available are defined by the message generator you wrap.

You can set a time limit on a call by passing _timeout= in the method call, or set a default when creating
the proxy. The _timeout argument is not passed to the message generator. All timeouts are in seconds, and
TimeoutErrror is raised if it expires before a reply arrives.

Parameters

4.6. Blocking I/O with threads 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/functions.html#int

Jeepney Documentation, Release 0.8.0

• msggen – A message generator object

• router (DBusRouter) – Router to send and receive messages

• timeout (float) – Default seconds to wait for a reply, or None for no limit

See also:

Message generators and proxies

jeepney.io.threading.open_dbus_connection(bus=’SESSION’, enable_fds=False,
auth_timeout=1.0)

Open a plain D-Bus connection

D-Bus has an authentication step before sending or receiving messages. This takes < 1 ms in normal operation,
but there is a timeout so that client code won’t get stuck if the server doesn’t reply. auth_timeout configures this
timeout in seconds.

Returns DBusConnection

class jeepney.io.threading.DBusConnection(sock: socket.socket, enable_fds=False)

send(message: jeepney.low_level.Message, serial=None)
Serialise and send a Message object

receive(*, timeout=None)→ jeepney.low_level.Message
Return the next available message from the connection

If the data is ready, this will return immediately, even if timeout<=0. Otherwise, it will wait for up to
timeout seconds, or indefinitely if timeout is None. If no message comes in time, it raises TimeoutError.

If the connection is closed from another thread, this will raise ReceiveStopped.

close()
Close the connection

4.7 Trio integration

This supports D-Bus in applications built with Trio. See Connections and Routers for more about the two interfaces.

jeepney.io.trio.open_dbus_router(bus=’SESSION’, *, enable_fds=False)
Open a D-Bus ‘router’ to send and receive messages.

Use as an async context manager:

async with open_dbus_router() as req:
...

Parameters bus (str) – ‘SESSION’ or ‘SYSTEM’ or a supported address.

Returns DBusRouter

This is a shortcut for:

conn = await open_dbus_connection()
async with conn:

async with conn.router() as req:
...

22 Chapter 4. API reference

https://docs.python.org/3/library/functions.html#float
https://trio.readthedocs.io/en/stable/
https://docs.python.org/3/library/stdtypes.html#str

Jeepney Documentation, Release 0.8.0

class jeepney.io.trio.DBusRouter(conn: jeepney.io.trio.DBusConnection)
A client D-Bus connection which can wait for replies.

This runs a separate receiver task and dispatches received messages.

send(message, *, serial=None)
Send a message, don’t wait for a reply

send_and_get_reply(message)→ jeepney.low_level.Message
Send a method call message and wait for the reply

Returns the reply message (method return or error message type).

filter(rule, *, channel: Optional[trio.MemorySendChannel] = None, bufsize=1)
Create a filter for incoming messages

Usage:

async with router.filter(rule) as receive_channel:
matching_msg = await receive_channel.receive()

OR:
send_chan, recv_chan = trio.open_memory_channel(1)
async with router.filter(rule, channel=send_chan):

matching_msg = await recv_chan.receive()

If the channel fills up, The sending end of the channel is closed when leaving the async with block,
whether or not it was passed in.

Parameters

• rule (jeepney.MatchRule) – Catch messages matching this rule

• channel (trio.MemorySendChannel) – Send matching messages here

• bufsize (int) – If no channel is passed in, create one with this size

aclose()
Stop the sender & receiver tasks

Leaving the async with block will also close the router.

class jeepney.io.trio.Proxy(msggen, router)
A trio proxy for calling D-Bus methods

You can call methods on the proxy object, such as await bus_proxy.Hello() to make a method call
over D-Bus and wait for a reply. It will either return a tuple of returned data, or raise DBusErrorResponse.
The methods available are defined by the message generator you wrap.

Parameters

• msggen – A message generator object.

• router (DBusRouter) – Router to send and receive messages.

See also:

Message generators and proxies

jeepney.io.trio.open_dbus_connection(bus=’SESSION’, *, enable_fds=False) → jeep-
ney.io.trio.DBusConnection

Open a plain D-Bus connection

Returns DBusConnection

4.7. Trio integration 23

https://docs.python.org/3/library/functions.html#int

Jeepney Documentation, Release 0.8.0

class jeepney.io.trio.DBusConnection(socket, enable_fds=False)
A plain D-Bus connection with no matching of replies.

This doesn’t run any separate tasks: sending and receiving are done in the task that calls those methods. It’s
suitable for implementing servers: several worker tasks can receive requests and send replies. For a typical
client pattern, see DBusRouter.

Implements trio’s channel interface for Message objects.

send(message: jeepney.low_level.Message, *, serial=None)
Serialise and send a Message object

receive()→ jeepney.low_level.Message
Return the next available message from the connection

router()
Temporarily wrap this connection as a DBusRouter

To be used like:

async with conn.router() as req:
reply = await req.send_and_get_reply(msg)

While the router is running, you shouldn’t use receive(). Once the router is closed, you can use the
plain connection again.

aclose()
Close the D-Bus connection

4.8 Asyncio integration

This supports D-Bus in applications built with asyncio. See Connections and Routers for more about the two interfaces.

jeepney.io.asyncio.open_dbus_router(bus=’SESSION’)
Open a D-Bus ‘router’ to send and receive messages

Use as an async context manager:

async with open_dbus_router() as router:
...

class jeepney.io.asyncio.DBusRouter(conn: jeepney.io.asyncio.DBusConnection)
A ‘client’ D-Bus connection which can wait for a specific reply.

This runs a background receiver task, and makes it possible to send a request and wait for the relevant reply.

send(message, *, serial=None)
Send a message, don’t wait for a reply

send_and_get_reply(message)→ jeepney.low_level.Message
Send a method call message and wait for the reply

Returns the reply message (method return or error message type).

filter(rule, *, queue: Optional[asyncio.queues.Queue] = None, bufsize=1)
Create a filter for incoming messages

Usage:

24 Chapter 4. API reference

https://docs.python.org/3/library/asyncio.html

Jeepney Documentation, Release 0.8.0

with router.filter(rule) as queue:
matching_msg = await queue.get()

Parameters

• rule (MatchRule) – Catch messages matching this rule

• queue (asyncio.Queue) – Send matching messages here

• bufsize (int) – If no queue is passed in, create one with this size

class jeepney.io.asyncio.Proxy(msggen, router)
An asyncio proxy for calling D-Bus methods

You can call methods on the proxy object, such as await bus_proxy.Hello() to make a method call
over D-Bus and wait for a reply. It will either return a tuple of returned data, or raise DBusErrorResponse.
The methods available are defined by the message generator you wrap.

Parameters

• msggen – A message generator object.

• router (DBusRouter) – Router to send and receive messages.

See also:

Message generators and proxies

jeepney.io.asyncio.open_dbus_connection(bus=’SESSION’)
Open a plain D-Bus connection

Returns DBusConnection

class jeepney.io.asyncio.DBusConnection(reader: asyncio.streams.StreamReader, writer:
asyncio.streams.StreamWriter)

A plain D-Bus connection with no matching of replies.

This doesn’t run any separate tasks: sending and receiving are done in the task that calls those methods. It’s
suitable for implementing servers: several worker tasks can receive requests and send replies. For a typical
client pattern, see DBusRouter.

send(message: jeepney.low_level.Message, *, serial=None)
Serialise and send a Message object

receive()→ jeepney.low_level.Message
Return the next available message from the connection

close()
Close the D-Bus connection

4.9 I/O Exceptions

exception jeepney.io.RouterClosed
Raised in tasks waiting for a reply when the router is closed

This will also be raised if the receiver task crashes, so tasks are not stuck waiting for a reply that can never come.
The router object will not be usable after this is raised.

There is also a deprecated jeepney.io.tornado integration. Recent versions of Tornado are built on asyncio, so
you can use the asyncio integration with Tornado applications.

4.9. I/O Exceptions 25

https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/functions.html#int

Jeepney Documentation, Release 0.8.0

26 Chapter 4. API reference

CHAPTER 5

Design & Limitations

There are two parts to Jeepney:

The core is all about creating D-Bus messages, serialising them to bytes, and deserialising bytes into Message
objects. It aims to be a complete & reliable implementation of the D-Bus wire protocol. It follows the idea of “Sans-
I/O”, implementing the D-Bus protocol independent of any means of sending or receiving the data.

The second part is I/O integration. This supports the typical use case for D-Bus - connecting to a message bus on
a Unix socket - with various I/O frameworks. There is one integration module for each framework, and they provide
similar interfaces (Connections and Routers), but differ as much as necessary to fit in with the different frameworks -
e.g. the Trio integration uses channels where the asyncio integration uses queues.

Jeepney also allows for a similar split in code using it. If you want to wrap the desktop notifications service, for
instance, you can write (or generate) a message generator class for it. The same message generator class can then be
wrapped in a proxy for any of Jeepney’s I/O integrations.

5.1 Non-goals

Jeepney does not (currently) aim for:

• Very high performance. Parsing binary messages in pure Python code is not the fastest way to do it, but for
many use cases of D-Bus it’s more than fast enough.

• Supporting all possible D-Bus transports. The I/O integration layer only works with Unix sockets, the most
common way to use D-Bus. If you need to use another transport, you can still use Message.serialise()
and Parser, and deal with sending & receiving data yourself.

• Supporting all authentication options. The auth module only provides what the I/O integration layer uses.

• High-level server APIs. Jeepney’s API for D-Bus servers is on a low-level, sending and receiving messages, not
registering handler methods. See dbus-objects for a server API built on top of Jeepney.

• ‘Magic’ introspection. Some D-Bus libraries use introspection at runtime to discover available methods, but
Jeepney does not. Instead, it uses introspection during development to write message generators (Generating
D-Bus wrappers).

27

https://sans-io.readthedocs.io/
https://sans-io.readthedocs.io/
https://github.com/FFY00/dbus-objects

Jeepney Documentation, Release 0.8.0

5.2 Alternatives

• GTK applications can use Gio.DBusConnection or a higher-level wrapper like dasbus or pydbus. There are also
GObject wrappers for specific D-Bus services, e.g. secret storage and desktop notifications.

• PyQt applications can use the Qt D-Bus module. This has been available in PyQt for many years, and in PySide
from version 6.2 (released in 2021).

• DBussy works with asyncio. It is a Python binding to the libdbus reference implementation in C, whereas
Jeepney reimplements the D-Bus protocol in Python.

• dbus-python is the original Python binding to libdbus. It is very complete and well tested, but may be trickier to
install and to integrate with event loops and async frameworks.

See also:

D-Bus Python bindings on the Freedesktop wiki

28 Chapter 5. Design & Limitations

https://lazka.github.io/pgi-docs/#Gio-2.0/classes/DBusConnection.html
https://github.com/rhinstaller/dasbus
https://github.com/LEW21/pydbus
https://lazka.github.io/pgi-docs/#Secret-1
https://lazka.github.io/pgi-docs/#Notify-0.7
https://doc.qt.io/qt-5/qtdbus-index.html
https://www.riverbankcomputing.com/static/Docs/PyQt5/api/qtdbus/qtdbus-module.html
https://doc.qt.io/qtforpython-6/PySide6/QtDBus/index.html#module-PySide6.QtDBus
https://github.com/ldo/dbussy
https://dbus.freedesktop.org/doc/dbus-python/
https://www.freedesktop.org/wiki/Software/DBusBindings/#python

CHAPTER 6

What is D-Bus?

D-Bus is a system for programs on the same computer to communicate. It’s used primarily on Linux, to interact with
various parts of the operating system.

For example, take desktop notifications - the alerts that appear to tell you about things like new chat messages.

Fig. 1: A desktop notification on GNOME

A program that wants to display a notification sends a D-Bus message to the ‘notification server’, which displays an
alert for a brief time and then hides it again. Different desktops, like GNOME and KDE, have different notification
servers, but they handle the same messages (defined in the desktop notification spec), so programs don’t need to do
different things for different desktops.

Other things that use D-Bus include:

• Retrieving passwords from the desktop’s ‘keyring’

• Disabling the screensaver while playing a film

• Special keyboard keys, like pause & skip track, working with whichever media player you use.

• Opening a user’s files in a sandboxed (Flatpak) application.

29

https://specifications.freedesktop.org/notification-spec/notification-spec-latest.html
https://flatpak.org/

Jeepney Documentation, Release 0.8.0

6.1 Methods & signals

D-Bus uses two types of messaging:

Method calls go to a specific destination, which replies with either a ‘method return’ or an error message. In the
notifications example above, the program sends a method call message to the notification server to ask it to display a
notification.

Signals are sent out to any program that subscribes to them. For example, when a desktop notification is closed, the
notification server sends a signal. The application might use this to choose between updating the notification (’2 new
messages’) or sending a new one. There’s no reply to a signal, and the sender doesn’t know if anything received it or
not.

6.2 Names

There are a lot of names in D-Bus, and they can look quite similar. For instance, displaying a desktop notifica-
tion involves sending a message to the bus name org.freedesktop.Notifications, for the object /org/
freedesktop/Notifications, with the interface org.freedesktop.Notifications. What do those
all mean?

• The bus name (. separated) is which program you’re talking to.

• The object name (/ separated) is which thing inside that program you want to use, e.g. which password in the
keyring.

• The interface name (. separated) is which set of methods and signals you are using. Most objects have one main
interface plus a few standard ones for things like introspection (finding what methods are available).

Finally, a simple name like Notify or NotificationClosed identifies which method is being called, or which
signal is being sent, from a list for that interface.

The bus, object and interface names are all based on reversed domain names. The people who control https:
//freedesktop.org/ can define names starting with org.freedesktop. (or /org/freedesktop/ for objects).
There’s no way to enforce this, but so long as everyone sticks to it, we don’t have to worry about the same name being
used for different things.

6.3 Message buses

Applications using D-Bus connect to a message bus, a small program which is always running. The bus takes care of
delivering messages to other applications.

There are normally two buses you need to know about. Each logged-in user has their own session bus, handling things
like desktop notifications (and the other examples above).

The system bus is shared for all users. In particular, requests sent via the system bus can do things that would
otherwise require admin (sudo) access, like unmounting a USB stick or installing new packages. (How the system
decides whether to allow these actions or not is a separate topic - look up ‘polkit’ if you want to know about that).

You can also talk to the message bus itself (using D-Bus messages, of course). This is how you subscribe to signals, or
claim a bus name so other programs can send you method calls. The message bus has the name org.freedesktop.
DBus.

Note: Programs can agree some other way to connect and send each other D-Bus messages without a message bus.
This isn’t very common, though.

30 Chapter 6. What is D-Bus?

https://freedesktop.org/
https://freedesktop.org/

Jeepney Documentation, Release 0.8.0

6.4 Special features

You can send a D-Bus message to a program that’s not even running, and the message bus will start it and then deliver
the message. This feature (activation) means that programs don’t have to stay running just to reply to D-Bus method
calls. A config file installed with the application defines its bus name and how to launch it.

Because D-Bus is designed to be used between programs on the same computer, it can do things that are impossible
over the network. D-Bus messages can include ‘file descriptors’, handles for things like open files, pipes and sockets.
This can be used to selectively give a program access to something that would normally be off limits. See Sending &
receiving file descriptors for how to use this from Jeepney.

See also:

Introduction to D-Bus (freedesktop.org)

Introduction to D-Bus (KDE)

D-Bus overview (txdbus)

6.4. Special features 31

https://www.freedesktop.org/wiki/IntroductionToDBus/
https://develop.kde.org/docs/d-bus/introduction_to_dbus/
https://pythonhosted.org/txdbus/dbus_overview.html

Jeepney Documentation, Release 0.8.0

32 Chapter 6. What is D-Bus?

CHAPTER 7

Release notes

7.1 0.8

2022-04-03

• Removed jeepney.integrate APIs, which were deprecated in 0.7. Use jeepney.io instead (see Con-
necting to DBus and sending messages).

• Removed deprecated jeepney.io.tornado API. Tornado now uses the asyncio event loop, so you can use
it along with jeepney.io.asyncio.

• Deprecated conn.router attribute in the Blocking I/O integration. Use proxies or
send_and_get_reply() to find replies to method calls, and filter() for other routing.

• Added docs page with background on D-Bus (What is D-Bus?).

7.2 0.7.1

2021-07-28

• Add async with support to DBusConnection in the asyncio integration.

• Fix calling receive() immediately after opening a connection in the asyncio integration.

Thanks to Aleksandr Mezin for these changes.

7.3 0.7

2021-07-21

• Support for sending and receiving file descriptors. This is available with the blocking, threading and trio inte-
gration layers.

33

Jeepney Documentation, Release 0.8.0

• Deprecated older integration APIs, in favour of new APIs introduced in 0.5.

• Fixed passing a deque in to filter() in the blocking integration API.

7.4 0.6

2020-11-19

• New method recv_until_filtered() in the blocking I/O integration to receive messages until one is
filtered into a queue.

• More efficient buffering of received data waiting to be parsed into D-Bus messages.

7.5 0.5

2020-11-10

• New common scheme for I/O integration - see Connections and Routers.

– This is designed for tasks to wait for messages and then act on them, rather than triggering callbacks. This
is based on ideas from ‘structured concurrency’, which also informs the design of Trio. See this blog post
by Nathaniel Smith for more background.

– There are new integrations for Trio and threading.

– The old integration interfaces should still work for now, but they will be deprecated and eventually re-
moved.

• Message.serialise() accepts a serial number, to serialise outgoing messages without modifying the
message object.

• Improved documentation, including API docs.

7.6 0.4.3

2020-03-04

• The blocking integration now throws ConnectionResetError on all systems when the connection was
closed from the other end. It would previously hang on some systems.

7.7 0.4.2

2020-01-03

• The blocking DBusConnection integration class now has a .close() method, and can be used as a context
manager:

from jeepney.integrate.blocking import connect_and_authenticate
with connect_and_authenticate() as connection:

...

34 Chapter 7. Release notes

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/

Jeepney Documentation, Release 0.8.0

7.8 0.4.1

2019-08-11

• Avoid using asyncio.Future for the blocking integration.

• Set the ‘destination’ field on method return and error messages to the ‘sender’ from the parent message.

Thanks to Oscar Caballero and Thomas Grainger for contributing to this release.

7.9 0.4

2018-09-24

• Authentication failures now raise a new AuthenticationError subclass of ValueError, so that they
can be caught specifically.

• Fixed logic error when authentication is rejected.

• Use effective user ID for authentication instead of real user ID. In typical use cases these are the same, but where
they differ, effective uid seems to be the relevant one.

• The 64 MiB size limit for an array is now checked when serialising it.

• New function jeepney.auth.make_auth_anonymous() to prepare an anonymous authentication mes-
sage. This is not used by the wrappers in Jeepney at the moment, but may be useful for third party code in some
situations.

• New examples for subscribing to D-Bus signals, with blocking I/O and with asyncio.

• Various improvements to documentation.

Thanks to Jane Soko and Gitlab user xiretza for contributing to this release.

See also:

D-Feet App for exploring available D-Bus services on your machine.

D-Bus Specification Technical details about the D-Bus protocol.

7.8. 0.4.1 35

https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/exceptions.html#ValueError
https://wiki.gnome.org/Apps/DFeet
https://dbus.freedesktop.org/doc/dbus-specification.html

Jeepney Documentation, Release 0.8.0

36 Chapter 7. Release notes

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

37

Jeepney Documentation, Release 0.8.0

38 Chapter 8. Indices and tables

Python Module Index

j
jeepney, 11
jeepney.auth, 17
jeepney.io.asyncio, 24
jeepney.io.blocking, 19
jeepney.io.threading, 20
jeepney.io.trio, 22

39

Jeepney Documentation, Release 0.8.0

40 Python Module Index

Index

A
aclose() (jeepney.io.trio.DBusConnection method),

24
aclose() (jeepney.io.trio.DBusRouter method), 23
add_arg_condition() (jeepney.MatchRule

method), 15
add_data() (jeepney.Parser method), 12
AddMatch() (jeepney.DBus method), 16
allow_interactive_authorization (jeep-

ney.MessageFlag attribute), 14
authenticated (jeepney.auth.Authenticator at-

tribute), 17
AuthenticationError, 17
Authenticator (class in jeepney.auth), 17

B
BecomeMonitor() (jeepney.Monitoring method), 16
BEGIN (in module jeepney.auth), 17
big (jeepney.Endianness attribute), 14
body (jeepney.DBusErrorResponse attribute), 14
body (jeepney.Message attribute), 12
body_length (jeepney.Header attribute), 13

C
close() (jeepney.FileDescriptor method), 18
close() (jeepney.io.asyncio.DBusConnection method),

25
close() (jeepney.io.blocking.DBusConnection

method), 20
close() (jeepney.io.threading.DBusConnection

method), 22
close() (jeepney.io.threading.DBusRouter method), 21

D
data_to_send() (jeepney.auth.Authenticator

method), 17
DBus (class in jeepney), 16
DBusAddress (class in jeepney), 12
DBusConnection (class in jeepney.io.asyncio), 25

DBusConnection (class in jeepney.io.blocking), 19
DBusConnection (class in jeepney.io.threading), 22
DBusConnection (class in jeepney.io.trio), 23
DBusErrorResponse, 14
DBusRouter (class in jeepney.io.asyncio), 24
DBusRouter (class in jeepney.io.threading), 21
DBusRouter (class in jeepney.io.trio), 22
destination (jeepney.HeaderFields attribute), 14

E
Endianness (class in jeepney), 14
endianness (jeepney.Header attribute), 13
error (jeepney.auth.Authenticator attribute), 17
error (jeepney.MessageType attribute), 15
error_name (jeepney.HeaderFields attribute), 14

F
FDNegotiationError, 17
feed() (jeepney.auth.Authenticator method), 17
fields (jeepney.Header attribute), 13
FileDescriptor (class in jeepney), 18
fileno() (jeepney.FileDescriptor method), 18
filter() (jeepney.io.asyncio.DBusRouter method), 24
filter() (jeepney.io.blocking.DBusConnection

method), 19
filter() (jeepney.io.threading.DBusRouter method),

21
filter() (jeepney.io.trio.DBusRouter method), 23
flags (jeepney.Header attribute), 13

G
get() (jeepney.Properties method), 15
get_all() (jeepney.Properties method), 15
get_next_message() (jeepney.Parser method), 12
GetAdtAuditSessionData() (jeepney.DBus

method), 16
GetConnectionCredentials() (jeepney.DBus

method), 16
GetConnectionSELinuxSecurityContext()

(jeepney.DBus method), 16

41

Jeepney Documentation, Release 0.8.0

GetConnectionUnixProcessID() (jeepney.DBus
method), 16

GetConnectionUnixUser() (jeepney.DBus
method), 16

GetId() (jeepney.DBus method), 16
GetNameOwner() (jeepney.DBus method), 16

H
Header (class in jeepney), 13
header (jeepney.Message attribute), 12
HeaderFields (class in jeepney), 14
Hello() (jeepney.DBus method), 16

I
interface (jeepney.DBus attribute), 16
interface (jeepney.HeaderFields attribute), 14
Introspect() (jeepney.Introspectable method), 15
Introspectable (class in jeepney), 15

J
jeepney (module), 11
jeepney.auth (module), 17
jeepney.io.asyncio (module), 24
jeepney.io.blocking (module), 19
jeepney.io.threading (module), 20
jeepney.io.trio (module), 22

L
ListActivatableNames() (jeepney.DBus method),

16
ListNames() (jeepney.DBus method), 16
ListQueuedOwners() (jeepney.DBus method), 16
little (jeepney.Endianness attribute), 14

M
make_auth_anonymous() (in module jeepney.auth),

17
make_auth_external() (in module jeepney.auth),

17
matches() (jeepney.MatchRule method), 15
MatchRule (class in jeepney), 15
member (jeepney.HeaderFields attribute), 14
Message (class in jeepney), 12
message_type (jeepney.Header attribute), 13
MessageFlag (class in jeepney), 14
MessageGenerator (class in jeepney), 12
MessageType (class in jeepney), 14
method_call (jeepney.MessageType attribute), 14
method_return (jeepney.MessageType attribute), 14
Monitoring (class in jeepney), 16

N
name (jeepney.DBusErrorResponse attribute), 14

NameHasOwner() (jeepney.DBus method), 16
new_error() (in module jeepney), 11
new_method_call() (in module jeepney), 11
new_method_return() (in module jeepney), 11
new_signal() (in module jeepney), 12
no_auto_start (jeepney.MessageFlag attribute), 14
no_reply_expected (jeepney.MessageFlag at-

tribute), 14
NoFDError, 19

O
open_dbus_connection() (in module jeep-

ney.io.asyncio), 25
open_dbus_connection() (in module jeep-

ney.io.blocking), 19
open_dbus_connection() (in module jeep-

ney.io.threading), 22
open_dbus_connection() (in module jeep-

ney.io.trio), 23
open_dbus_router() (in module jeep-

ney.io.asyncio), 24
open_dbus_router() (in module jeep-

ney.io.threading), 20
open_dbus_router() (in module jeepney.io.trio), 22

P
Parser (class in jeepney), 12
path (jeepney.HeaderFields attribute), 14
Properties (class in jeepney), 15
protocol_version (jeepney.Header attribute), 13
Proxy (class in jeepney.io.asyncio), 25
Proxy (class in jeepney.io.blocking), 20
Proxy (class in jeepney.io.threading), 21
Proxy (class in jeepney.io.trio), 23

R
receive() (jeepney.io.asyncio.DBusConnection

method), 25
receive() (jeepney.io.blocking.DBusConnection

method), 19
receive() (jeepney.io.threading.DBusConnection

method), 22
receive() (jeepney.io.trio.DBusConnection method),

24
recv_messages() (jeep-

ney.io.blocking.DBusConnection method),
19

recv_until_filtered() (jeep-
ney.io.blocking.DBusConnection method),
20

ReleaseName() (jeepney.DBus method), 16
ReloadConfig() (jeepney.DBus method), 16
RemoveMatch() (jeepney.DBus method), 16
reply_serial (jeepney.HeaderFields attribute), 14

42 Index

Jeepney Documentation, Release 0.8.0

RequestName() (jeepney.DBus method), 16
router() (jeepney.io.trio.DBusConnection method),

24
RouterClosed, 25

S
send() (jeepney.io.asyncio.DBusConnection method),

25
send() (jeepney.io.asyncio.DBusRouter method), 24
send() (jeepney.io.blocking.DBusConnection method),

19
send() (jeepney.io.threading.DBusConnection

method), 22
send() (jeepney.io.threading.DBusRouter method), 21
send() (jeepney.io.trio.DBusConnection method), 24
send() (jeepney.io.trio.DBusRouter method), 23
send_and_get_reply() (jeep-

ney.io.asyncio.DBusRouter method), 24
send_and_get_reply() (jeep-

ney.io.blocking.DBusConnection method),
19

send_and_get_reply() (jeep-
ney.io.threading.DBusRouter method), 21

send_and_get_reply() (jeep-
ney.io.trio.DBusRouter method), 23

sender (jeepney.HeaderFields attribute), 14
serial (jeepney.Header attribute), 13
serialise() (jeepney.MatchRule method), 15
serialise() (jeepney.Message method), 13
set() (jeepney.Properties method), 15
signal (jeepney.MessageType attribute), 15
signature (jeepney.HeaderFields attribute), 14
SizeLimitError, 14
StartServiceByName() (jeepney.DBus method), 16

T
to_file() (jeepney.FileDescriptor method), 18
to_raw_fd() (jeepney.FileDescriptor method), 18
to_socket() (jeepney.FileDescriptor method), 18

U
unix_fds (jeepney.HeaderFields attribute), 14
UpdateActivationEnvironment() (jeep-

ney.DBus method), 16

Index 43

	Connecting to DBus and sending messages
	Connections and Routers
	Message generators and proxies
	Sending & receiving file descriptors

	Making and parsing messages
	Making messages

	Generating D-Bus wrappers
	API reference
	Core API
	Common messages
	Authentication
	File descriptor support
	Blocking I/O
	Blocking I/O with threads
	Trio integration
	Asyncio integration
	I/O Exceptions

	Design & Limitations
	Non-goals
	Alternatives

	What is D-Bus?
	Methods & signals
	Names
	Message buses
	Special features

	Release notes
	0.8
	0.7.1
	0.7
	0.6
	0.5
	0.4.3
	0.4.2
	0.4.1
	0.4

	Indices and tables
	Python Module Index
	Index

