

Jeepney 0.8.0

Jeepney is a pure Python interface to D-Bus, a protocol for interprocess
communication on desktop Linux (mostly). See What is D-Bus? for more
background on what it can do.

The core of Jeepney is I/O free [https://sans-io.readthedocs.io/], and the
jeepney.io package contains bindings for different event loops to
handle I/O. Jeepney tries to be non-magical, so you may have to write a bit
more code than with other interfaces such as dbus-python [https://pypi.python.org/pypi/dbus-python]
or pydbus [https://github.com/LEW21/pydbus].

Jeepney doesn’t rely on libdbus or other compiled libraries, so it’s easy
to install with Python tools like pip:

pip install jeepney

For most use cases, the D-Bus daemon needs to be running on your computer;
this is a standard part of most modern Linux desktops.

Contents:

	Connecting to DBus and sending messages
	Connections and Routers

	Message generators and proxies

	Sending & receiving file descriptors

	Making and parsing messages
	Making messages

	Generating D-Bus wrappers

	API reference
	Core API

	Common messages

	Authentication

	File descriptor support

	Blocking I/O

	Blocking I/O with threads

	Trio integration

	Asyncio integration

	I/O Exceptions

	Design & Limitations
	Non-goals

	Alternatives

	What is D-Bus?
	Methods & signals

	Names

	Message buses

	Special features

	Release notes
	0.8

	0.7.1

	0.7

	0.6

	0.5

	0.4.3

	0.4.2

	0.4.1

	0.4

See also

	D-Feet [https://wiki.gnome.org/Apps/DFeet]

	App for exploring available D-Bus services on your machine.

	D-Bus Specification [https://dbus.freedesktop.org/doc/dbus-specification.html]

	Technical details about the D-Bus protocol.

Indices and tables

	Index

	Module Index

	Search Page

Connecting to DBus and sending messages

Jeepney can be used with several different frameworks:

	Blocking I/O

	Multi-threading with the threading [https://docs.python.org/3/library/threading.html] module

	Trio [https://trio.readthedocs.io/en/stable/]

	asyncio [https://docs.python.org/3/library/asyncio.html]

For each of these, there is a module in jeepney.io providing the
integration layer.

Here’s an example of sending a desktop notification, using blocking I/O:

from jeepney import DBusAddress, new_method_call
from jeepney.io.blocking import open_dbus_connection

notifications = DBusAddress('/org/freedesktop/Notifications',
 bus_name='org.freedesktop.Notifications',
 interface='org.freedesktop.Notifications')

connection = open_dbus_connection(bus='SESSION')

Construct a new D-Bus message. new_method_call takes the address, the
method name, the signature string, and a tuple of arguments.
msg = new_method_call(notifications, 'Notify', 'susssasa{sv}i',
 ('jeepney_test', # App name
 0, # Not replacing any previous notification
 '', # Icon
 'Hello, world!', # Summary
 'This is an example notification from Jeepney',
 [], {}, # Actions, hints
 -1, # expire_timeout (-1 = default)
))

Send the message and wait for the reply
reply = connection.send_and_get_reply(msg)
print('Notification ID:', reply.body[0])

connection.close()

And here is the same thing using asyncio:

"""Send a desktop notification

See also aio_notify.py, which does the same with the higher-level Proxy API.
"""
import asyncio

from jeepney import DBusAddress, new_method_call
from jeepney.io.asyncio import open_dbus_router

notifications = DBusAddress('/org/freedesktop/Notifications',
 bus_name='org.freedesktop.Notifications',
 interface='org.freedesktop.Notifications')

async def send_notification():
 msg = new_method_call(notifications, 'Notify', 'susssasa{sv}i',
 ('jeepney_test', # App name
 0, # Not replacing any previous notification
 '', # Icon
 'Hello, world!', # Summary
 'This is an example notification from Jeepney',
 [], {}, # Actions, hints
 -1, # expire_timeout (-1 = default)
))
 # Send the message and await the reply
 async with open_dbus_router() as router:
 reply = await router.send_and_get_reply(msg)
 print('Notification ID:', reply.body[0])

loop = asyncio.get_event_loop()
loop.run_until_complete(send_notification())

See the examples folder [https://gitlab.com/takluyver/jeepney/-/tree/master/examples]
in Jeepney’s source repository for more examples.

Connections and Routers

Each integration (except blocking I/O) can create connections and routers.

Routers are useful for calling methods in other processes.
Routers let you send a request and wait for a reply, using a
proxy or with router.send_and_get_reply().
You can also filter incoming messages into queues, e.g. to wait for a specific
signal. But if messages arrive faster than they are processed, these queues fill
up, and messages may be dropped.

Connections are simpler: they let you send and receive messages, but
conn.receive() will give you the next message read, whatever that is.
You’d use this to write a server which responds to incoming messages.
A connection will never discard an incoming message.

Note

For blocking, single-threaded I/O, the connection doubles as a router.
Incoming messages while you’re waiting for a reply will be filtered,
and you can also filter the next message by calling conn.recv_messages().

Routers for the other integrations receive messages in a background task.

Message generators and proxies

If you’re calling a number of different methods, you can make a message
generator class containing their definitions. Jeepney includes a tool to
generate these classes automatically—see Generating D-Bus wrappers.

Message generators define how to construct messages. Proxies are wrappers
around message generators which send a message and get the reply back.

Let’s rewrite the example above to use a message generator and a proxy:

"""Send a desktop notification

See also aio_notify_noproxy.py, which does the same with lower-level APIs
"""
import asyncio

from jeepney import MessageGenerator, new_method_call
from jeepney.io.asyncio import open_dbus_router, Proxy

---- Message generator, created by jeepney.bindgen ----
class Notifications(MessageGenerator):
 interface = 'org.freedesktop.Notifications'

 def __init__(self, object_path='/org/freedesktop/Notifications',
 bus_name='org.freedesktop.Notifications'):
 super().__init__(object_path=object_path, bus_name=bus_name)

 def Notify(self, arg_0, arg_1, arg_2, arg_3, arg_4, arg_5, arg_6, arg_7):
 return new_method_call(self, 'Notify', 'susssasa{sv}i',
 (arg_0, arg_1, arg_2, arg_3, arg_4, arg_5, arg_6, arg_7))

 def CloseNotification(self, arg_0):
 return new_method_call(self, 'CloseNotification', 'u',
 (arg_0,))

 def GetCapabilities(self):
 return new_method_call(self, 'GetCapabilities')

 def GetServerInformation(self):
 return new_method_call(self, 'GetServerInformation')
---- End auto generated code ----

async def send_notification():
 async with open_dbus_router() as router:
 proxy = Proxy(Notifications(), router)

 resp = await proxy.Notify('jeepney_test', # App name
 0, # Not replacing any previous notification
 '', # Icon
 'Hello, world!', # Summary
 'This is an example notification from Jeepney',
 [], {}, # Actions, hints
 -1, # expire_timeout (-1 = default)
)
 print('Notification ID:', resp[0])

if __name__ == '__main__':
 asyncio.run(send_notification())

This is more code for the simple use case here, but in a larger application
collecting the message definitions together like this could make it clearer.

Sending & receiving file descriptors

New in version 0.7.

D-Bus allows sending file descriptors - references to open files, sockets, etc.
To use this, use the blocking, multi-threading or Trio integration and enable it
(enable_fds=True) when connecting to D-Bus. If you enable FD support but the
message bus can’t or won’t support it, FDNegotiationError will be raised.

To send a file descriptor, pass any object with a .fileno() method, such as
an open file or socket, or a suitable integer. The file descriptor must not be
closed before the message is sent.

A received file descriptor will be returned as a FileDescriptor object
to help avoid leaking FDs. This can easily be converted to
a file object (to_file()),
a socket (to_socket())
or a plain integer (to_raw_fd()).

Send a file descriptor for a temp file (normally not visible in any folder)
with TemporaryFile() as tf:
 msg = new_method_call(server, 'write_data', 'h', (tf,))
 await router.send_and_get_reply(msg)

Receive a file descriptor, use it as a writable file
msg = await conn.receive()
fd, = msg.body
with fd.to_file('w') as f:
 f.write(f'Timestamp: {datetime.now()}')

The snippets above are based on the Trio integration. See the
examples directory [https://gitlab.com/takluyver/jeepney/-/tree/master/examples]
in the Jeepney repository for complete, working examples.

Making and parsing messages

The core of Jeepney is code to build, serialise and deserialise D-Bus messages.

Making messages

D-Bus has four message types. Three, method call, method return and error,
are used in a request-reply pattern. The fourth, signal, is a broadcast
message with no reply.

	Method call messages are most conveniently made with a message generator
class, which can be autogenerated. One layer down from this
is new_method_call(), which takes a DBusAddress object.

	Method return and error messages are made with
new_method_return() and new_error(), passing the method call
message which they are replying to.

	signal messages are made with new_signal(), which takes a
DBusAddress representing the sender.

All of these return a Message object. Message.serialise()
converts it to bytes, but none of these core methods ever send a message.
See the integration layer for that.

Signatures

D-Bus is strongly typed, and every message has a signature describing the body
data. These are strings using characters such as i for a signed 32-bit
integer. See the DBus specification [https://dbus.freedesktop.org/doc/dbus-specification.html#type-system]
for the full list.

Jeepney does not try to guess or discover the signature when you build a
message: your code must explicitly specify a signature for every message.
However, Jeepney can help you write this code: see Generating D-Bus wrappers.

D-Bus types are converted to and from native Python objects as follows:

	All the D-Bus integer types are represented as Python int [https://docs.python.org/3/library/functions.html#int],
including BYTE when it’s not in an array.

	BOOLEAN is bool [https://docs.python.org/3/library/functions.html#bool].

	DOUBLE is float [https://docs.python.org/3/library/functions.html#float].

	STRING, OBJECT_PATH and SIGNATURE are all str [https://docs.python.org/3/library/stdtypes.html#str].

	ARRAY is list [https://docs.python.org/3/library/stdtypes.html#list], except that an array of BYTE is a
bytes [https://docs.python.org/3/library/stdtypes.html#bytes] object, and an array of DICT_ENTRY is a dict [https://docs.python.org/3/library/stdtypes.html#dict].

	STRUCT is tuple [https://docs.python.org/3/library/stdtypes.html#tuple].

	VARIANT is a 2-tuple (signature, data). E.g. to put a string into
a variant field, you would pass the data ("s", "my string").

	UNIX_FD are converted from objects with a .fileno() method
or plain integers, and converted to FileDescriptor objects. See
Sending & receiving file descriptors for more details.

Generating D-Bus wrappers

D-Bus includes a mechanism to introspect remote objects and discover the methods
they define. Jeepney can use this to generate classes defining the messages to
send. Use it like this:

python3 -m jeepney.bindgen --name org.freedesktop.Notifications \
 --path /org/freedesktop/Notifications

This command will produce the class in the example under Message generators and proxies.

You specify name—which D-Bus service you’re talking to—and path—an
object in that service. Jeepney will generate a wrapper for each interface that
object has, except for some standard ones like the introspection interface
itself.

You are welcome to edit the generated code, e.g. to add docstrings or give
parameters meaningful names. Names like arg_1 are created when
introspection doesn’t provide a name.

API reference

	Core API
	Message constructors

	Parsing

	Message objects

	Exceptions

	Enums & Flags

	Matching messages

	Common messages

	Authentication
	Typical flow

	File descriptor support

I/O integrations

	Blocking I/O

	Blocking I/O with threads

	Trio integration

	Asyncio integration

	I/O Exceptions

There is also a deprecated jeepney.io.tornado integration. Recent versions
of Tornado are built on asyncio, so you can use the asyncio integration with
Tornado applications.

Core API

Message constructors

	
jeepney.new_method_call(remote_obj, method, signature=None, body=())

	Construct a new method call message

This is a relatively low-level method. In many cases, this will be called
from a MessageGenerator subclass which provides a more convenient
API.

	Parameters

	
	remote_obj (DBusAddress) – The object to call a method on

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the method to call

	signature (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DBus signature of the body data

	body (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Body data (i.e. method parameters)

	
jeepney.new_method_return(parent_msg, signature=None, body=())

	Construct a new response message

	Parameters

	
	parent_msg (Message) – The method call this is a reply to

	signature (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DBus signature of the body data

	body (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Body data

	
jeepney.new_error(parent_msg, error_name, signature=None, body=())

	Construct a new error response message

	Parameters

	
	parent_msg (Message) – The method call this is a reply to

	error_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the error

	signature (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DBus signature of the body data

	body (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Body data

	
jeepney.new_signal(emitter, signal, signature=None, body=())

	Construct a new signal message

	Parameters

	
	emitter (DBusAddress) – The object sending the signal

	signal (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the signal

	signature (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DBus signature of the body data

	body (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Body data

	
class jeepney.DBusAddress(object_path, bus_name=None, interface=None)

	This identifies the object and interface a message is for.

e.g. messages to display desktop notifications would have this address:

DBusAddress('/org/freedesktop/Notifications',
 bus_name='org.freedesktop.Notifications',
 interface='org.freedesktop.Notifications')

	
class jeepney.MessageGenerator(object_path, bus_name)

	Subclass this to define the methods available on a DBus interface.

jeepney.bindgen can automatically create subclasses using introspection.

See also

Generating D-Bus wrappers

Parsing

	
class jeepney.Parser

	Parse DBus messages from a stream of incoming data.

	
add_data(data: bytes, fds=())

	Provide newly received data to the parser

	
get_next_message() → Optional[jeepney.low_level.Message]

	Parse one message, if there is enough data.

Returns None if it doesn’t have a complete message.

Message objects

	
class jeepney.Message(header, body)

	Object representing a DBus message.

It’s not normally necessary to construct this directly: use higher level
functions and methods instead.

	
header

	A Header object

	
body

	A tuple of the data in this message. The number and types of the elements
depend on the message’s signature:

	D-Bus type

	D-Bus code

	Python type

	BYTE

	y

	int

	BOOLEAN

	b

	bool

	INT16

	n

	int

	UINT16

	q

	int

	INT32

	i

	int

	UINT32

	u

	int

	INT64

	x

	int

	UINT64

	t

	int

	DOUBLE

	d

	float

	STRING

	s

	str

	OBJECT_PATH

	o

	str

	SIGNATURE

	g

	str

	ARRAY

	a

	list

	STRUCT

	()

	tuple

	VARIANT

	v

	2-tuple (signature, value)

	DICT_ENTRY

	{}

	dict (for array of dict entries)

	UNIX_FD

	h

	See Sending & receiving file descriptors

	
serialise(serial=None, fds=None) → bytes

	Convert this message to bytes.

Specifying serial overrides the msg.header.serial field, so a
connection can use its own serial number without modifying the message.

If file-descriptor support is in use, fds should be a
array.array [https://docs.python.org/3/library/array.html#array.array] object with type 'i'. Any file descriptors in
the message will be added to the array. If the message contains FDs,
it can’t be serialised without this array.

	
class jeepney.Header(endianness, message_type, flags, protocol_version, body_length, serial, fields)

	
	
endianness

	Endianness object, affecting message serialisation.

	
message_type

	MessageType object.

	
flags

	MessageFlag object.

	
protocol_version

	Currently always 1.

	
body_length

	The length of the raw message body in bytes.

	
serial

	Sender’s serial number for this message. This is not necessarily set
for outgoing messages - see Message.serialise().

	
fields

	Mapping of HeaderFields values to the relevant Python objects.

Exceptions

	
exception jeepney.SizeLimitError

	Raised when trying to (de-)serialise data exceeding D-Bus’ size limit.

This is currently only implemented for arrays, where the maximum size is
64 MiB.

	
exception jeepney.DBusErrorResponse(msg)

	Raised by proxy method calls when the reply is an error message

	
name

	The error name from the remote end.

	
body

	Any data fields contained in the error message.

Enums & Flags

	
class jeepney.Endianness

	
	
little = 1

	

	
big = 2

	

	
class jeepney.HeaderFields

	
	
path = 1

	

	
interface = 2

	

	
member = 3

	

	
error_name = 4

	

	
reply_serial = 5

	

	
destination = 6

	

	
sender = 7

	

	
signature = 8

	

	
unix_fds = 9

	

	
class jeepney.MessageFlag

	
	
no_reply_expected = 1

	On a method call message, indicates that a reply should not be sent.

	
no_auto_start = 2

	D-Bus includes a mechanism to start a service on demand to handle
messages. If this flag is set, it will avoid that, only handling the
message if the target is already running.

	
allow_interactive_authorization = 4

	Signals that the recipient may prompt the user for elevated privileges
to handle the request. The D-Bus specification has more details.

	
class jeepney.MessageType

	
	
method_call = 1

	

	
method_return = 2

	

	
error = 3

	

	
signal = 4

	

Matching messages

	
class jeepney.MatchRule(*, type=None, sender=None, interface=None, member=None, path=None, path_namespace=None, destination=None, eavesdrop=False)

	Construct a match rule to subscribe to DBus messages.

e.g.:

mr = MatchRule(
 interface='org.freedesktop.DBus',
 member='NameOwnerChanged',
 type='signal'
)
msg = message_bus.AddMatch(mr)
Send this message to subscribe to the signal

MatchRule objects are used both for filtering messages internally, and for
setting up subscriptions in the message bus.

	
add_arg_condition(argno: int, value: str, kind='string')

	Add a condition for a particular argument

argno: int, 0-63
kind: ‘string’, ‘path’, ‘namespace’

	
matches(msg: jeepney.low_level.Message) → bool

	Returns True if msg matches this rule

	
serialise() → str

	Convert to a string to use in an AddMatch call to the message bus

Common messages

These classes are message generators. Wrap them in a Proxy class to actually send the messages as well.

	
class jeepney.Properties(obj: Union[jeepney.wrappers.DBusAddress, jeepney.wrappers.MessageGenerator])

	Build messages for accessing object properties

If a D-Bus object has multiple interfaces, each interface has its own
set of properties.

This uses the standard DBus interface org.freedesktop.DBus.Properties

	
get(name)

	Get the value of the property name

	
get_all()

	Get all property values for this interface

	
set(name, signature, value)

	Set the property name to value (with appropriate signature)

	
class jeepney.Introspectable(object_path, bus_name)

	
	
Introspect()

	Request D-Bus introspection XML for a remote object

	
class jeepney.DBus(object_path='/org/freedesktop/DBus', bus_name='org.freedesktop.DBus')

	Messages to talk to the message bus

There is a ready-made instance of this at jeepney.message_bus.

	
AddMatch(rule)

	rule can be a str or a MatchRule instance

	
GetAdtAuditSessionData(name)

	

	
GetConnectionCredentials(name)

	

	
GetConnectionSELinuxSecurityContext(name)

	

	
GetConnectionUnixProcessID(name)

	

	
GetConnectionUnixUser(name)

	

	
GetId()

	

	
GetNameOwner(name)

	

	
Hello()

	

	
ListActivatableNames()

	

	
ListNames()

	

	
ListQueuedOwners(name)

	

	
NameHasOwner(name)

	

	
ReleaseName(name)

	

	
ReloadConfig()

	

	
RemoveMatch(rule)

	

	
RequestName(name, flags=0)

	

	
StartServiceByName(name)

	

	
UpdateActivationEnvironment(env)

	

	
interface = 'org.freedesktop.DBus'

	

	
class jeepney.Monitoring(object_path='/org/freedesktop/DBus', bus_name='org.freedesktop.DBus')

	
	
BecomeMonitor(rules)

	Convert this connection to a monitor connection (advanced)

Authentication

Note

If you use any of Jeepney’s I/O integrations, authentication is built
in. You only need these functions if you’re working outside that.

If you are setting up a socket for D-Bus, you will need to do SASL [https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer]
authentication before starting to send and receive D-Bus messages.
This text based protocol is completely different to D-Bus itself.

Only a small fraction of SASL is implemented here, primarily what Jeepney’s
integration layer uses. If you’re doing something different, you may need to
implement other messages yourself.

	
jeepney.auth.make_auth_external() → bytes

	Prepare an AUTH command line with the current effective user ID.

This is the preferred authentication method for typical D-Bus connections
over a Unix domain socket.

	
jeepney.auth.make_auth_anonymous() → bytes

	Format an AUTH command line for the ANONYMOUS mechanism

Jeepney’s higher-level wrappers don’t currently use this mechanism,
but third-party code may choose to.

See <https://tools.ietf.org/html/rfc4505> for details.

	
jeepney.auth.BEGIN

	Send this just before switching to the D-Bus protocol.

	
class jeepney.auth.Authenticator(enable_fds=False)

	Process data for the SASL authentication conversation

If enable_fds is True, this includes negotiating support for passing
file descriptors.

Changed in version 0.7: This class was renamed from SASLParser and substantially changed.

	
authenticated

	Initially False, changes to True when authentication has succeeded.

	
error

	None, or the raw bytes of an error message if authentication failed.

	
data_to_send() → Optional[bytes]

	Get a line of data to send to the server

The data returned should be sent before waiting to receive data.
Returns empty bytes if waiting for more data from the server, and None
if authentication is finished (success or error).

Iterating over the Authenticator object will also yield these lines;
feed() should be called with received data inside the loop.

	
feed(data: bytes)

	Process received data

Raises AuthenticationError if the incoming data is not as expected for
successful authentication. The connection should then be abandoned.

	
exception jeepney.auth.AuthenticationError(data, msg='Authentication failed')

	Raised when DBus authentication fails

	
exception jeepney.auth.FDNegotiationError(data)

	Raised when file descriptor support is requested but not available

Typical flow

	Send the data from Authenticator.data_to_send() (or
for req_data in authenticator).

	Receive data from the server, pass to Authenticator.feed().

	Repeat 1 & 2 until Authenticator.authenticated is True, or the for
loop exits.

	Send BEGIN.

	Start sending & receiving D-Bus messages.

File descriptor support

	
class jeepney.FileDescriptor(fd)

	A file descriptor received in a D-Bus message

This wrapper helps ensure that the file descriptor is closed exactly once.
If you don’t explicitly convert or close the FileDescriptor object, it will
close its file descriptor when it goes out of scope, and emit a
ResourceWarning.

	
to_file(mode, buffering=-1, encoding=None, errors=None, newline=None)

	Convert to a Python file object:

with fd.to_file('w') as f:
 f.write('xyz')

The arguments are the same as for the builtin open() [https://docs.python.org/3/library/functions.html#open] function.

The FileDescriptor can’t be used after calling this. Closing
the file object will also close the file descriptor.

Note

If the descriptor does not refer to a regular file, or it doesn’t have
the right access mode, you may get strange behaviour or errors while
using it.

You can use os.stat() [https://docs.python.org/3/library/os.html#os.stat] and the stat [https://docs.python.org/3/library/stat.html#module-stat] module to check the
type of object the descriptor refers to, and fcntl.fcntl() [https://docs.python.org/3/library/fcntl.html#fcntl.fcntl]
to check the access mode, e.g.:

stat.S_ISREG(os.stat(fd.fileno()).st_mode) # Regular file?

status_flags = fcntl.fcntl(fd, fcntl.F_GETFL)
(status_flags & os.O_ACCMODE) == os.O_RDONLY # Read-only?

	
to_socket()

	Convert to a socket object

This returns a standard library socket.socket() object:

with fd.to_socket() as sock:
 b = sock.sendall(b'xyz')

The wrapper object can’t be used after calling this. Closing the socket
object will also close the file descriptor.

	
to_raw_fd()

	Convert to the low-level integer file descriptor:

raw_fd = fd.to_raw_fd()
os.write(raw_fd, b'xyz')
os.close(raw_fd)

The FileDescriptor can’t be used after calling this. The caller
is responsible for closing the file descriptor.

	
fileno()

	Get the integer file descriptor

This does not change the state of the FileDescriptor object,
unlike the to_* methods.

	
close()

	Close the file descriptor

This can safely be called multiple times, but will raise RuntimeError
if called after converting it with one of the to_* methods.

This object can also be used in a with block, to close it on
leaving the block.

	
exception jeepney.NoFDError

	Raised by FileDescriptor methods if it was already closed/converted

Blocking I/O

This is a good option for simple scripts, where you don’t need to do anything
else while waiting for a D-Bus reply. If you will use D-Bus for multiple
threads, or you want a nicer way to wait for signals, see Blocking I/O with threads.

	
jeepney.io.blocking.open_dbus_connection(bus='SESSION', enable_fds=False, auth_timeout=1.0) → jeepney.io.blocking.DBusConnection

	Connect to a D-Bus message bus

Pass enable_fds=True to allow sending & receiving file descriptors.
An error will be raised if the bus does not allow this. For simplicity,
it’s advisable to leave this disabled unless you need it.

D-Bus has an authentication step before sending or receiving messages.
This takes < 1 ms in normal operation, but there is a timeout so that client
code won’t get stuck if the server doesn’t reply. auth_timeout configures
this timeout in seconds.

	
class jeepney.io.blocking.DBusConnection(sock: socket.socket, enable_fds=False)

	
	
send(message: jeepney.low_level.Message, serial=None)

	Serialise and send a Message object

	
receive(*, timeout=None) → jeepney.low_level.Message

	Return the next available message from the connection

If the data is ready, this will return immediately, even if timeout<=0.
Otherwise, it will wait for up to timeout seconds, or indefinitely if
timeout is None. If no message comes in time, it raises TimeoutError.

	
send_and_get_reply(message, *, timeout=None, unwrap=None)

	Send a message, wait for the reply and return it

Filters are applied to other messages received before the reply -
see add_filter().

	
recv_messages(*, timeout=None)

	Receive one message and apply filters

See filter(). Returns nothing.

	
filter(rule, *, queue: Optional[collections.deque] = None, bufsize=1)

	Create a filter for incoming messages

Usage:

with conn.filter(rule) as matches:
 # matches is a deque containing matched messages
 matching_msg = conn.recv_until_filtered(matches)

	Parameters

	
	rule (jeepney.MatchRule) – Catch messages matching this rule

	queue (collections.deque [https://docs.python.org/3/library/collections.html#collections.deque]) – Matched messages will be added to this

	bufsize (int [https://docs.python.org/3/library/functions.html#int]) – If no deque is passed in, create one with this size

	
recv_until_filtered(queue, *, timeout=None) → jeepney.low_level.Message

	Process incoming messages until one is filtered into queue

Pops the message from queue and returns it, or raises TimeoutError if
the optional timeout expires. Without a timeout, this is equivalent to:

while len(queue) == 0:
 conn.recv_messages()
return queue.popleft()

In the other I/O modules, there is no need for this, because messages
are placed in queues by a separate task.

	Parameters

	
	queue (collections.deque [https://docs.python.org/3/library/collections.html#collections.deque]) – A deque connected by filter()

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Maximum time to wait in seconds

	
close()

	Close the connection

Using with open_dbus_connection() will also close the connection on
exiting the block.

	
class jeepney.io.blocking.Proxy(msggen, connection, *, timeout=None)

	A blocking proxy for calling D-Bus methods

You can call methods on the proxy object, such as bus_proxy.Hello()
to make a method call over D-Bus and wait for a reply. It will either
return a tuple of returned data, or raise DBusErrorResponse.
The methods available are defined by the message generator you wrap.

You can set a time limit on a call by passing _timeout= in the method
call, or set a default when creating the proxy. The _timeout argument
is not passed to the message generator.
All timeouts are in seconds, and TimeoutErrror is raised if it
expires before a reply arrives.

	Parameters

	
	msggen – A message generator object

	connection (DBusConnection) – Connection to send and receive messages

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default seconds to wait for a reply, or None for no limit

See also

Message generators and proxies

Blocking I/O with threads

This allows using a D-Bus connection from multiple threads.
The router also launches a separate thread to receive incoming messages.
See Connections and Routers for more about the two interfaces.

	
jeepney.io.threading.open_dbus_router(bus='SESSION', enable_fds=False)

	Open a D-Bus ‘router’ to send and receive messages.

Use as a context manager:

with open_dbus_router() as router:
 ...

On leaving the with block, the connection will be closed.

	Parameters

	
	bus (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘SESSION’ or ‘SYSTEM’ or a supported address.

	enable_fds (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enable passing file descriptors.

	Returns

	DBusRouter

	
class jeepney.io.threading.DBusRouter(conn: jeepney.io.threading.DBusConnection)

	A client D-Bus connection which can wait for replies.

This runs a separate receiver thread and dispatches received messages.

It’s possible to wrap a DBusConnection in a router temporarily.
Using the connection directly while it is wrapped is not supported,
but you can use it again after the router is closed.

	
send(message, *, serial=None)

	Serialise and send a Message object

	
send_and_get_reply(msg: jeepney.low_level.Message, *, timeout=None) → jeepney.low_level.Message

	Send a method call message, wait for and return a reply

	
filter(rule, *, queue: Optional[queue.Queue] = None, bufsize=1)

	Create a filter for incoming messages

Usage:

with router.filter(rule) as queue:
 matching_msg = queue.get()

	Parameters

	
	rule (jeepney.MatchRule) – Catch messages matching this rule

	queue (queue.Queue [https://docs.python.org/3/library/queue.html#queue.Queue]) – Matched messages will be added to this

	bufsize (int [https://docs.python.org/3/library/functions.html#int]) – If no queue is passed in, create one with this size

	
close()

	Close this router

This does not close the underlying connection.

Leaving the with block will also close the router.

	
class jeepney.io.threading.Proxy(msggen, router, *, timeout=None)

	A blocking proxy for calling D-Bus methods via a DBusRouter.

You can call methods on the proxy object, such as bus_proxy.Hello()
to make a method call over D-Bus and wait for a reply. It will either
return a tuple of returned data, or raise DBusErrorResponse.
The methods available are defined by the message generator you wrap.

You can set a time limit on a call by passing _timeout= in the method
call, or set a default when creating the proxy. The _timeout argument
is not passed to the message generator.
All timeouts are in seconds, and TimeoutErrror is raised if it
expires before a reply arrives.

	Parameters

	
	msggen – A message generator object

	router (DBusRouter) – Router to send and receive messages

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Default seconds to wait for a reply, or None for no limit

See also

Message generators and proxies

	
jeepney.io.threading.open_dbus_connection(bus='SESSION', enable_fds=False, auth_timeout=1.0)

	Open a plain D-Bus connection

D-Bus has an authentication step before sending or receiving messages.
This takes < 1 ms in normal operation, but there is a timeout so that client
code won’t get stuck if the server doesn’t reply. auth_timeout configures
this timeout in seconds.

	Returns

	DBusConnection

	
class jeepney.io.threading.DBusConnection(sock: socket.socket, enable_fds=False)

	
	
send(message: jeepney.low_level.Message, serial=None)

	Serialise and send a Message object

	
receive(*, timeout=None) → jeepney.low_level.Message

	Return the next available message from the connection

If the data is ready, this will return immediately, even if timeout<=0.
Otherwise, it will wait for up to timeout seconds, or indefinitely if
timeout is None. If no message comes in time, it raises TimeoutError.

If the connection is closed from another thread, this will raise
ReceiveStopped.

	
close()

	Close the connection

Trio integration

This supports D-Bus in applications built with
Trio [https://trio.readthedocs.io/en/stable/].
See Connections and Routers for more about the two interfaces.

	
jeepney.io.trio.open_dbus_router(bus='SESSION', *, enable_fds=False)

	Open a D-Bus ‘router’ to send and receive messages.

Use as an async context manager:

async with open_dbus_router() as req:
 ...

	Parameters

	bus (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘SESSION’ or ‘SYSTEM’ or a supported address.

	Returns

	DBusRouter

This is a shortcut for:

conn = await open_dbus_connection()
async with conn:
 async with conn.router() as req:
 ...

	
class jeepney.io.trio.DBusRouter(conn: jeepney.io.trio.DBusConnection)

	A client D-Bus connection which can wait for replies.

This runs a separate receiver task and dispatches received messages.

	
send(message, *, serial=None)

	Send a message, don’t wait for a reply

	
send_and_get_reply(message) → jeepney.low_level.Message

	Send a method call message and wait for the reply

Returns the reply message (method return or error message type).

	
filter(rule, *, channel: Optional[trio.MemorySendChannel] = None, bufsize=1)

	Create a filter for incoming messages

Usage:

async with router.filter(rule) as receive_channel:
 matching_msg = await receive_channel.receive()

OR:
send_chan, recv_chan = trio.open_memory_channel(1)
async with router.filter(rule, channel=send_chan):
 matching_msg = await recv_chan.receive()

If the channel fills up,
The sending end of the channel is closed when leaving the async with
block, whether or not it was passed in.

	Parameters

	
	rule (jeepney.MatchRule) – Catch messages matching this rule

	channel (trio.MemorySendChannel) – Send matching messages here

	bufsize (int [https://docs.python.org/3/library/functions.html#int]) – If no channel is passed in, create one with this size

	
aclose()

	Stop the sender & receiver tasks

Leaving the async with block will also close the router.

	
class jeepney.io.trio.Proxy(msggen, router)

	A trio proxy for calling D-Bus methods

You can call methods on the proxy object, such as await bus_proxy.Hello()
to make a method call over D-Bus and wait for a reply. It will either
return a tuple of returned data, or raise DBusErrorResponse.
The methods available are defined by the message generator you wrap.

	Parameters

	
	msggen – A message generator object.

	router (DBusRouter) – Router to send and receive messages.

See also

Message generators and proxies

	
jeepney.io.trio.open_dbus_connection(bus='SESSION', *, enable_fds=False) → jeepney.io.trio.DBusConnection

	Open a plain D-Bus connection

	Returns

	DBusConnection

	
class jeepney.io.trio.DBusConnection(socket, enable_fds=False)

	A plain D-Bus connection with no matching of replies.

This doesn’t run any separate tasks: sending and receiving are done in
the task that calls those methods. It’s suitable for implementing servers:
several worker tasks can receive requests and send replies.
For a typical client pattern, see DBusRouter.

Implements trio’s channel interface for Message objects.

	
send(message: jeepney.low_level.Message, *, serial=None)

	Serialise and send a Message object

	
receive() → jeepney.low_level.Message

	Return the next available message from the connection

	
router()

	Temporarily wrap this connection as a DBusRouter

To be used like:

async with conn.router() as req:
 reply = await req.send_and_get_reply(msg)

While the router is running, you shouldn’t use receive().
Once the router is closed, you can use the plain connection again.

	
aclose()

	Close the D-Bus connection

Asyncio integration

This supports D-Bus in applications built with
asyncio [https://docs.python.org/3/library/asyncio.html].
See Connections and Routers for more about the two interfaces.

	
jeepney.io.asyncio.open_dbus_router(bus='SESSION')

	Open a D-Bus ‘router’ to send and receive messages

Use as an async context manager:

async with open_dbus_router() as router:
 ...

	
class jeepney.io.asyncio.DBusRouter(conn: jeepney.io.asyncio.DBusConnection)

	A ‘client’ D-Bus connection which can wait for a specific reply.

This runs a background receiver task, and makes it possible to send a
request and wait for the relevant reply.

	
send(message, *, serial=None)

	Send a message, don’t wait for a reply

	
send_and_get_reply(message) → jeepney.low_level.Message

	Send a method call message and wait for the reply

Returns the reply message (method return or error message type).

	
filter(rule, *, queue: Optional[asyncio.queues.Queue] = None, bufsize=1)

	Create a filter for incoming messages

Usage:

with router.filter(rule) as queue:
 matching_msg = await queue.get()

	Parameters

	
	rule (MatchRule) – Catch messages matching this rule

	queue (asyncio.Queue [https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue]) – Send matching messages here

	bufsize (int [https://docs.python.org/3/library/functions.html#int]) – If no queue is passed in, create one with this size

	
class jeepney.io.asyncio.Proxy(msggen, router)

	An asyncio proxy for calling D-Bus methods

You can call methods on the proxy object, such as await bus_proxy.Hello()
to make a method call over D-Bus and wait for a reply. It will either
return a tuple of returned data, or raise DBusErrorResponse.
The methods available are defined by the message generator you wrap.

	Parameters

	
	msggen – A message generator object.

	router (DBusRouter) – Router to send and receive messages.

See also

Message generators and proxies

	
jeepney.io.asyncio.open_dbus_connection(bus='SESSION')

	Open a plain D-Bus connection

	Returns

	DBusConnection

	
class jeepney.io.asyncio.DBusConnection(reader: asyncio.streams.StreamReader, writer: asyncio.streams.StreamWriter)

	A plain D-Bus connection with no matching of replies.

This doesn’t run any separate tasks: sending and receiving are done in
the task that calls those methods. It’s suitable for implementing servers:
several worker tasks can receive requests and send replies.
For a typical client pattern, see DBusRouter.

	
send(message: jeepney.low_level.Message, *, serial=None)

	Serialise and send a Message object

	
receive() → jeepney.low_level.Message

	Return the next available message from the connection

	
close()

	Close the D-Bus connection

I/O Exceptions

	
exception jeepney.io.RouterClosed

	Raised in tasks waiting for a reply when the router is closed

This will also be raised if the receiver task crashes, so tasks are not
stuck waiting for a reply that can never come. The router object will not
be usable after this is raised.

Design & Limitations

There are two parts to Jeepney:

The core is all about creating D-Bus messages, serialising them to bytes,
and deserialising bytes into Message objects.
It aims to be a complete & reliable implementation of the D-Bus wire protocol.
It follows the idea of “Sans-I/O” [https://sans-io.readthedocs.io/],
implementing the D-Bus protocol independent of any means of sending or receiving
the data.

The second part is I/O integration. This supports the typical use case for
D-Bus - connecting to a message bus on a Unix socket - with various I/O
frameworks. There is one integration module for each framework, and they provide
similar interfaces (Connections and Routers), but differ as much as
necessary to fit in with the different frameworks - e.g. the Trio integration
uses channels where the asyncio integration uses queues.

Jeepney also allows for a similar split in code using it. If you want to wrap
the desktop notifications service, for instance, you can write (or generate) a
message generator class for it.
The same message generator class can then be wrapped in a proxy for any of
Jeepney’s I/O integrations.

Non-goals

Jeepney does not (currently) aim for:

	Very high performance. Parsing binary messages in pure Python code is not
the fastest way to do it, but for many use cases of D-Bus it’s more than fast
enough.

	Supporting all possible D-Bus transports. The I/O integration layer only works
with Unix sockets, the most common way to use D-Bus. If you need to use
another transport, you can still use Message.serialise() and
Parser, and deal with sending & receiving data yourself.

	Supporting all authentication options. The auth module
only provides what the I/O integration layer uses.

	High-level server APIs. Jeepney’s API for D-Bus servers is on a low-level,
sending and receiving messages, not registering handler methods. See
dbus-objects [https://github.com/FFY00/dbus-objects] for a server API
built on top of Jeepney.

	‘Magic’ introspection. Some D-Bus libraries use introspection at runtime to
discover available methods, but Jeepney does not. Instead, it uses
introspection during development to write message generators (Generating D-Bus wrappers).

Alternatives

	GTK applications can use Gio.DBusConnection [https://lazka.github.io/pgi-docs/#Gio-2.0/classes/DBusConnection.html]
or a higher-level wrapper like dasbus [https://github.com/rhinstaller/dasbus]
or pydbus [https://github.com/LEW21/pydbus].
There are also GObject wrappers for specific D-Bus services, e.g.
secret storage [https://lazka.github.io/pgi-docs/#Secret-1] and
desktop notifications [https://lazka.github.io/pgi-docs/#Notify-0.7].

	PyQt applications can use the Qt D-Bus module [https://doc.qt.io/qt-5/qtdbus-index.html]. This has been available in PyQt [https://www.riverbankcomputing.com/static/Docs/PyQt5/api/qtdbus/qtdbus-module.html]
for many years, and in PySide [https://doc.qt.io/qtforpython-6/PySide6/QtDBus/index.html#module-PySide6.QtDBus]
from version 6.2 (released in 2021).

	DBussy [https://github.com/ldo/dbussy] works with asyncio. It is a Python
binding to the libdbus reference implementation in C, whereas Jeepney
reimplements the D-Bus protocol in Python.

	dbus-python [https://dbus.freedesktop.org/doc/dbus-python/] is the original
Python binding to libdbus. It is very complete and well tested, but may be
trickier to install and to integrate with event loops and async frameworks.

See also

D-Bus Python bindings on the Freedesktop wiki [https://www.freedesktop.org/wiki/Software/DBusBindings/#python]

What is D-Bus?

D-Bus is a system for programs on the same computer to communicate.
It’s used primarily on Linux, to interact with various parts of the operating
system.

For example, take desktop notifications - the alerts that appear to tell you
about things like new chat messages.

[image: _images/desktop-notification.png]

A desktop notification on GNOME

A program that wants to display a notification sends a D-Bus message to the
‘notification server’, which displays an alert for a brief time and then hides
it again. Different desktops, like GNOME and KDE, have different notification
servers, but they handle the same messages (defined in the desktop notification
spec [https://specifications.freedesktop.org/notification-spec/notification-spec-latest.html]),
so programs don’t need to do different things for different desktops.

Other things that use D-Bus include:

	Retrieving passwords from the desktop’s ‘keyring’

	Disabling the screensaver while playing a film

	Special keyboard keys, like pause & skip track, working with whichever
media player you use.

	Opening a user’s files in a sandboxed (Flatpak [https://flatpak.org/])
application.

Methods & signals

D-Bus uses two types of messaging:

Method calls go to a specific destination, which replies with either a
‘method return’ or an error message. In the notifications example above,
the program sends a method call message to the notification server to ask it
to display a notification.

Signals are sent out to any program that subscribes to them. For example,
when a desktop notification is closed, the notification server sends a signal.
The application might use this to choose between updating the notification
(’2 new messages’) or sending a new one. There’s no reply to a signal,
and the sender doesn’t know if anything received it or not.

Names

There are a lot of names in D-Bus, and they can look quite similar.
For instance, displaying a desktop notification involves sending a message to
the bus name org.freedesktop.Notifications, for the object
/org/freedesktop/Notifications, with the interface
org.freedesktop.Notifications. What do those all mean?

	The bus name (. separated) is which program you’re talking to.

	The object name (/ separated) is which thing inside that program you want
to use, e.g. which password in the keyring.

	The interface name (. separated) is which set of methods and signals
you are using. Most objects have one main interface plus a few
standard ones for things like introspection (finding what methods are
available).

Finally, a simple name like Notify or NotificationClosed identifies
which method is being called, or which signal is being sent, from a list for
that interface.

The bus, object and interface names are all based on reversed domain names.
The people who control https://freedesktop.org/ can define names starting
with org.freedesktop. (or /org/freedesktop/ for objects). There’s no way
to enforce this, but so long as everyone sticks to it, we don’t have to worry
about the same name being used for different things.

Message buses

Applications using D-Bus connect to a message bus, a small program which is
always running. The bus takes care of delivering messages to other applications.

There are normally two buses you need to know about.
Each logged-in user has their own session bus, handling things
like desktop notifications (and the other examples above).

The system bus is shared for all users. In particular, requests sent via the
system bus can do things that would otherwise require admin (sudo) access, like
unmounting a USB stick or installing new packages. (How the system decides
whether to allow these actions or not is a separate topic - look up ‘polkit’ if
you want to know about that).

You can also talk to the message bus itself (using D-Bus messages, of course).
This is how you subscribe to signals, or claim a bus name so other programs can
send you method calls. The message bus has the name org.freedesktop.DBus.

Note

Programs can agree some other way to connect and send each other D-Bus
messages without a message bus. This isn’t very common, though.

Special features

You can send a D-Bus message to a program that’s not even running, and the
message bus will start it and then deliver the message. This feature
(activation) means that programs don’t have to stay running just to reply to
D-Bus method calls. A config file installed with the application defines its
bus name and how to launch it.

Because D-Bus is designed to be used between programs on the same computer,
it can do things that are impossible over the network. D-Bus messages can
include ‘file descriptors’, handles for things like open files, pipes and
sockets. This can be used to selectively give a program access to something
that would normally be off limits. See Sending & receiving file descriptors for how to use this
from Jeepney.

See also

Introduction to D-Bus (freedesktop.org) [https://www.freedesktop.org/wiki/IntroductionToDBus/]

Introduction to D-Bus (KDE) [https://develop.kde.org/docs/d-bus/introduction_to_dbus/]

D-Bus overview (txdbus) [https://pythonhosted.org/txdbus/dbus_overview.html]

Release notes

0.8

2022-04-03

	Removed jeepney.integrate APIs, which were deprecated in 0.7. Use
jeepney.io instead (see Connecting to DBus and sending messages).

	Removed deprecated jeepney.io.tornado API. Tornado now uses the asyncio
event loop, so you can use it along with jeepney.io.asyncio.

	Deprecated conn.router attribute in the Blocking I/O integration.
Use proxies or send_and_get_reply()
to find replies to method calls, and filter()
for other routing.

	Added docs page with background on D-Bus (What is D-Bus?).

0.7.1

2021-07-28

	Add async with support to DBusConnection in the
asyncio integration.

	Fix calling receive() immediately after opening
a connection in the asyncio integration.

Thanks to Aleksandr Mezin for these changes.

0.7

2021-07-21

	Support for sending and receiving file descriptors.
This is available with the blocking, threading and trio integration layers.

	Deprecated older integration APIs, in favour of new APIs introduced in 0.5.

	Fixed passing a deque in to filter() in the
blocking integration API.

0.6

2020-11-19

	New method recv_until_filtered() in the
blocking I/O integration to receive messages until one is filtered into a
queue.

	More efficient buffering of received data waiting to be parsed into D-Bus
messages.

0.5

2020-11-10

	New common scheme for I/O integration - see Connections and Routers.

	This is designed for tasks to wait for messages and then act on them,
rather than triggering callbacks. This is based on ideas from ‘structured
concurrency’, which also informs the design of Trio. See this blog post
by Nathaniel Smith [https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/]
for more background.

	There are new integrations for Trio and threading.

	The old integration interfaces should still work for now, but they will be
deprecated and eventually removed.

	Message.serialise() accepts a serial number, to serialise outgoing
messages without modifying the message object.

	Improved documentation, including API docs.

0.4.3

2020-03-04

	The blocking integration now throws ConnectionResetError on all systems
when the connection was closed from the other end. It would previously hang
on some systems.

0.4.2

2020-01-03

	The blocking DBusConnection integration class now has a .close()
method, and can be used as a context manager:

from jeepney.integrate.blocking import connect_and_authenticate
with connect_and_authenticate() as connection:
 ...

0.4.1

2019-08-11

	Avoid using asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] for the blocking integration.

	Set the ‘destination’ field on method return and error messages to the
‘sender’ from the parent message.

Thanks to Oscar Caballero and Thomas Grainger for contributing to this release.

0.4

2018-09-24

	Authentication failures now raise a new AuthenticationError
subclass of ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], so that they can be caught specifically.

	Fixed logic error when authentication is rejected.

	Use effective user ID for authentication instead of real user ID.
In typical use cases these are the same, but where they differ, effective
uid seems to be the relevant one.

	The 64 MiB size limit for an array is now checked when serialising it.

	New function jeepney.auth.make_auth_anonymous() to prepare an anonymous
authentication message. This is not used by the wrappers in Jeepney at the
moment, but may be useful for third party code in some situations.

	New examples for subscribing to D-Bus signals, with blocking I/O and with
asyncio.

	Various improvements to documentation.

Thanks to Jane Soko and Gitlab user xiretza for contributing to this release.

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jeepney	

 	
 	
 jeepney.auth	

 	
 	
 jeepney.io.asyncio	

 	
 	
 jeepney.io.blocking	

 	
 	
 jeepney.io.threading	

 	
 	
 jeepney.io.trio	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	aclose() (jeepney.io.trio.DBusConnection method)

 	(jeepney.io.trio.DBusRouter method)

 	add_arg_condition() (jeepney.MatchRule method)

 	add_data() (jeepney.Parser method)

 	
 	AddMatch() (jeepney.DBus method)

 	allow_interactive_authorization (jeepney.MessageFlag attribute)

 	authenticated (jeepney.auth.Authenticator attribute)

 	AuthenticationError

 	Authenticator (class in jeepney.auth)

B

 	
 	BecomeMonitor() (jeepney.Monitoring method)

 	BEGIN (in module jeepney.auth)

 	big (jeepney.Endianness attribute)

 	
 	body (jeepney.DBusErrorResponse attribute)

 	(jeepney.Message attribute)

 	body_length (jeepney.Header attribute)

C

 	
 	close() (jeepney.FileDescriptor method)

 	(jeepney.io.asyncio.DBusConnection method)

 	(jeepney.io.blocking.DBusConnection method)

 	(jeepney.io.threading.DBusConnection method)

 	(jeepney.io.threading.DBusRouter method)

D

 	
 	data_to_send() (jeepney.auth.Authenticator method)

 	DBus (class in jeepney)

 	DBusAddress (class in jeepney)

 	DBusConnection (class in jeepney.io.asyncio)

 	(class in jeepney.io.blocking)

 	(class in jeepney.io.threading)

 	(class in jeepney.io.trio)

 	
 	DBusErrorResponse

 	DBusRouter (class in jeepney.io.asyncio)

 	(class in jeepney.io.threading)

 	(class in jeepney.io.trio)

 	destination (jeepney.HeaderFields attribute)

E

 	
 	Endianness (class in jeepney)

 	endianness (jeepney.Header attribute)

 	
 	error (jeepney.auth.Authenticator attribute)

 	(jeepney.MessageType attribute)

 	error_name (jeepney.HeaderFields attribute)

F

 	
 	FDNegotiationError

 	feed() (jeepney.auth.Authenticator method)

 	fields (jeepney.Header attribute)

 	FileDescriptor (class in jeepney)

 	fileno() (jeepney.FileDescriptor method)

 	
 	filter() (jeepney.io.asyncio.DBusRouter method)

 	(jeepney.io.blocking.DBusConnection method)

 	(jeepney.io.threading.DBusRouter method)

 	(jeepney.io.trio.DBusRouter method)

 	flags (jeepney.Header attribute)

G

 	
 	get() (jeepney.Properties method)

 	get_all() (jeepney.Properties method)

 	get_next_message() (jeepney.Parser method)

 	GetAdtAuditSessionData() (jeepney.DBus method)

 	GetConnectionCredentials() (jeepney.DBus method)

 	
 	GetConnectionSELinuxSecurityContext() (jeepney.DBus method)

 	GetConnectionUnixProcessID() (jeepney.DBus method)

 	GetConnectionUnixUser() (jeepney.DBus method)

 	GetId() (jeepney.DBus method)

 	GetNameOwner() (jeepney.DBus method)

H

 	
 	Header (class in jeepney)

 	header (jeepney.Message attribute)

 	
 	HeaderFields (class in jeepney)

 	Hello() (jeepney.DBus method)

I

 	
 	interface (jeepney.DBus attribute)

 	(jeepney.HeaderFields attribute)

 	
 	Introspect() (jeepney.Introspectable method)

 	Introspectable (class in jeepney)

J

 	
 	jeepney (module)

 	jeepney.auth (module)

 	jeepney.io.asyncio (module)

 	
 	jeepney.io.blocking (module)

 	jeepney.io.threading (module)

 	jeepney.io.trio (module)

L

 	
 	ListActivatableNames() (jeepney.DBus method)

 	ListNames() (jeepney.DBus method)

 	
 	ListQueuedOwners() (jeepney.DBus method)

 	little (jeepney.Endianness attribute)

M

 	
 	make_auth_anonymous() (in module jeepney.auth)

 	make_auth_external() (in module jeepney.auth)

 	matches() (jeepney.MatchRule method)

 	MatchRule (class in jeepney)

 	member (jeepney.HeaderFields attribute)

 	Message (class in jeepney)

 	
 	message_type (jeepney.Header attribute)

 	MessageFlag (class in jeepney)

 	MessageGenerator (class in jeepney)

 	MessageType (class in jeepney)

 	method_call (jeepney.MessageType attribute)

 	method_return (jeepney.MessageType attribute)

 	Monitoring (class in jeepney)

N

 	
 	name (jeepney.DBusErrorResponse attribute)

 	NameHasOwner() (jeepney.DBus method)

 	new_error() (in module jeepney)

 	new_method_call() (in module jeepney)

 	
 	new_method_return() (in module jeepney)

 	new_signal() (in module jeepney)

 	no_auto_start (jeepney.MessageFlag attribute)

 	no_reply_expected (jeepney.MessageFlag attribute)

 	NoFDError

O

 	
 	open_dbus_connection() (in module jeepney.io.asyncio)

 	(in module jeepney.io.blocking)

 	(in module jeepney.io.threading)

 	(in module jeepney.io.trio)

 	
 	open_dbus_router() (in module jeepney.io.asyncio)

 	(in module jeepney.io.threading)

 	(in module jeepney.io.trio)

P

 	
 	Parser (class in jeepney)

 	path (jeepney.HeaderFields attribute)

 	Properties (class in jeepney)

 	protocol_version (jeepney.Header attribute)

 	
 	Proxy (class in jeepney.io.asyncio)

 	(class in jeepney.io.blocking)

 	(class in jeepney.io.threading)

 	(class in jeepney.io.trio)

R

 	
 	receive() (jeepney.io.asyncio.DBusConnection method)

 	(jeepney.io.blocking.DBusConnection method)

 	(jeepney.io.threading.DBusConnection method)

 	(jeepney.io.trio.DBusConnection method)

 	recv_messages() (jeepney.io.blocking.DBusConnection method)

 	recv_until_filtered() (jeepney.io.blocking.DBusConnection method)

 	
 	ReleaseName() (jeepney.DBus method)

 	ReloadConfig() (jeepney.DBus method)

 	RemoveMatch() (jeepney.DBus method)

 	reply_serial (jeepney.HeaderFields attribute)

 	RequestName() (jeepney.DBus method)

 	router() (jeepney.io.trio.DBusConnection method)

 	RouterClosed

S

 	
 	send() (jeepney.io.asyncio.DBusConnection method)

 	(jeepney.io.asyncio.DBusRouter method)

 	(jeepney.io.blocking.DBusConnection method)

 	(jeepney.io.threading.DBusConnection method)

 	(jeepney.io.threading.DBusRouter method)

 	(jeepney.io.trio.DBusConnection method)

 	(jeepney.io.trio.DBusRouter method)

 	send_and_get_reply() (jeepney.io.asyncio.DBusRouter method)

 	(jeepney.io.blocking.DBusConnection method)

 	(jeepney.io.threading.DBusRouter method)

 	(jeepney.io.trio.DBusRouter method)

 	
 	sender (jeepney.HeaderFields attribute)

 	serial (jeepney.Header attribute)

 	serialise() (jeepney.MatchRule method)

 	(jeepney.Message method)

 	set() (jeepney.Properties method)

 	signal (jeepney.MessageType attribute)

 	signature (jeepney.HeaderFields attribute)

 	SizeLimitError

 	StartServiceByName() (jeepney.DBus method)

T

 	
 	to_file() (jeepney.FileDescriptor method)

 	
 	to_raw_fd() (jeepney.FileDescriptor method)

 	to_socket() (jeepney.FileDescriptor method)

U

 	
 	unix_fds (jeepney.HeaderFields attribute)

 	
 	UpdateActivationEnvironment() (jeepney.DBus method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/desktop-notification.png

_static/file.png

_images/desktop-notification.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Jeepney 0.8.0

 		
 Connecting to DBus and sending messages

 		
 Connections and Routers

 		
 Message generators and proxies

 		
 Sending & receiving file descriptors

 		
 Making and parsing messages

 		
 Making messages

 		
 Signatures

 		
 Generating D-Bus wrappers

 		
 API reference

 		
 Core API

 		
 Message constructors

 		
 Parsing

 		
 Message objects

 		
 Exceptions

 		
 Enums & Flags

 		
 Matching messages

 		
 Common messages

 		
 Authentication

 		
 Typical flow

 		
 File descriptor support

 		
 Blocking I/O

 		
 Blocking I/O with threads

 		
 Trio integration

 		
 Asyncio integration

 		
 I/O Exceptions

 		
 Design & Limitations

 		
 Non-goals

 		
 Alternatives

 		
 What is D-Bus?

 		
 Methods & signals

 		
 Names

 		
 Message buses

 		
 Special features

 		
 Release notes

 		
 0.8

 		
 0.7.1

 		
 0.7

 		
 0.6

 		
 0.5

 		
 0.4.3

 		
 0.4.2

 		
 0.4.1

 		
 0.4

_static/up-pressed.png

_static/up.png

_static/plus.png

